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THE IMPACT OF UNCERTAINTY SHOCKS

BY NICHOLAS BLOOM1

Uncertainty appears to jump up after major shocks like the Cuban Missile crisis, the
assassination of JFK, the OPEC I oil-price shock, and the 9/11 terrorist attacks. This
paper offers a structural framework to analyze the impact of these uncertainty shocks.
I build a model with a time-varying second moment, which is numerically solved and
estimated using firm-level data. The parameterized model is then used to simulate a
macro uncertainty shock, which produces a rapid drop and rebound in aggregate out-
put and employment. This occurs because higher uncertainty causes firms to temporar-
ily pause their investment and hiring. Productivity growth also falls because this pause
in activity freezes reallocation across units. In the medium term the increased volatility
from the shock induces an overshoot in output, employment, and productivity. Thus,
uncertainty shocks generate short sharp recessions and recoveries. This simulated im-
pact of an uncertainty shock is compared to vector autoregression estimations on actual
data, showing a good match in both magnitude and timing. The paper also jointly esti-
mates labor and capital adjustment costs (both convex and nonconvex). Ignoring capital
adjustment costs is shown to lead to substantial bias, while ignoring labor adjustment
costs does not.
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1. INTRODUCTION

UNCERTAINTY APPEARS TO dramatically increase after major economic and
political shocks like the Cuban missile crisis, the assassination of JFK, the
OPEC I oil-price shock, and the 9/11 terrorist attacks. Figure 1 plots stock-
market volatility—one proxy for uncertainty—which displays large bursts of
uncertainty after major shocks, which temporarily double (implied) volatility
on average.2 These volatility shocks are strongly correlated with other mea-
sures of uncertainty, like the cross-sectional spread of firm- and industry-level
earnings and productivity growth. Vector autoregression (VAR) estimations
suggest that they also have a large real impact, generating a substantial drop
and rebound in output and employment over the following 6 months.

1This article was the main chapter of my Ph.D. thesis, previously called “The Impact of Uncer-
tainty Shocks: A Firm-Level Estimation and a 9/11 Simulation.” I would like to thank my advisors
Richard Blundell and John Van Reenen; the co-editor and the referees; my formal discussants
Susantu Basu, Russell Cooper, Janice Eberly, Eduardo Engel, John Haltiwanger, Valerie Ramey,
and Chris Sims; Max Floetotto; and many seminar audiences. Financial support of the ESRC and
the Sloan Foundation is gratefully acknowledged.

2In financial markets implied share-returns volatility is the canonical measure for uncertainty.
Bloom, Bond, and Van Reenen (2007) showed that firm-level share-returns volatility is signif-
icantly correlated with a range of alternative uncertainty proxies, including real sales growth
volatility and the cross-sectional distribution of financial analysts’ forecasts. While Shiller (1981)
has argued that the level of stock-price volatility is excessively high, Figure 1 suggests that changes
in stock-price volatility are nevertheless linked with real and financial shocks.
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FIGURE 1.—Monthly U.S. stock market volatility. Notes: Chicago Board of Options Exchange
VXO index of percentage implied volatility, on a hypothetical at the money S&P100 option
30 days to expiration, from 1986 onward. Pre-1986 the VXO index is unavailable, so actual
monthly returns volatilities are calculated as the monthly standard deviation of the daily S&P500
index normalized to the same mean and variance as the VXO index when they overlap from 1986
onward. Actual and VXO are correlated at 0.874 over this period. A brief description of the na-
ture and exact timing of every shock is contained in Appendix A. The asterisks indicate that for
scaling purposes the monthly VXO was capped at 50. Uncapped values for the Black Monday
peak are 58.2 and for the credit crunch peak are 64.4. LTCM is Long Term Capital Management.

Uncertainty is also a ubiquitous concern of policymakers. For example, af-
ter 9/11 the Federal Open Market Committee (FOMC), worried about exactly
the type of real-options effects analyzed in this paper, stated in October 2001
that “the events of September 11 produced a marked increase in uncertainty
[. . . ] depressing investment by fostering an increasingly widespread wait-and-
see attitude.” Similarly, during the credit crunch the FOMC noted that “Sev-
eral [survey] participants reported that uncertainty about the economic out-
look was leading firms to defer spending projects until prospects for economic
activity became clearer.”

Despite the size and regularity of these second-moment (uncertainty)
shocks, there is no model that analyzes their effects. This is surprising given
the extensive literature on the impact of first-moment (levels) shocks. This
leaves open a wide variety of questions on the impact of major macroeco-
nomic shocks, since these typically have both a first- and a second-moment
component.

The primary contribution of this paper is to structurally analyze these types
of uncertainty shocks. This is achieved by extending a standard firm-level
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model with a time-varying second moment of the driving process and a mix of
labor and capital adjustment costs. The model yields a central region of inac-
tion in hiring and investment space due to nonconvex adjustment costs. Firms
only hire and invest when business conditions are sufficiently good, and only
fire and disinvest when they are sufficiently bad. When uncertainty is higher,
this region of inaction expands—firms become more cautious in responding to
business conditions.

I use this model to simulate the impact of a large temporary uncertainty
shock and find that it generates a rapid drop, rebound, and overshoot in em-
ployment, output, and productivity growth. Hiring and investment rates fall
dramatically in the 4 months after the shock because higher uncertainty in-
creases the real-option value to waiting, so firms scale back their plans. Once
uncertainty has subsided, activity quickly bounces back as firms address their
pent-up demand for labor and capital. Aggregate productivity growth also falls
dramatically after the shock because the drop in hiring and investment reduces
the rate of reallocation from low to high productivity firms, which drives the
majority of productivity growth in the model as in the real economy.3 Again
productivity growth rapidly bounces back as pent-up reallocation occurs.

In the medium term the increased volatility arising from the uncertainty
shock generates a “volatility overshoot.” The reason is that most firms are lo-
cated near their hiring and investment thresholds, above which they hire/invest
and below which they have a zone of inaction. So small positive shocks gener-
ate a hiring and investment response while small negative shocks generate no
response. Hence, hiring and investment are locally convex in business condi-
tions (demand and productivity). The increased volatility of business condi-
tions growth after a second-moment shock therefore leads to a medium-term
rise in labor and capital.

In sum, these second-moment effects generate a rapid slowdown and
bounce-back in economic activity, entirely consistent with the empirical evi-
dence. This is very different from the much more persistent slowdown that
typically occurs in response to the type of first-moment productivity and/or
demand shock that is usually modelled in the literature.4 This highlights the
importance to policymakers of distinguishing between the persistent first-
moment effects and the temporary second-moment effects of major shocks.

I then evaluate the robustness of these predictions to general equilibrium ef-
fects, which for computational reasons are not included in my baseline model.
To investigate this I build the falls in interest rates, prices, and wages that oc-
cur after actual uncertainty shocks into the simulation. This has little short-run
effect on the simulations, suggesting that the results are robust to general equi-
librium effects. The reason is that the rise in uncertainty following a second-
moment shock not only generates a slowdown in activity, but it also makes firms

3See Foster, Haltiwanger, and Krizan (2000, 2006).
4See, for example, Christiano, Eichenbaum, and Evans (2005) and the references therein.
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temporarily extremely insensitive to price changes. This raises a second policy
implication that the economy will be particularly unresponsive to monetary or
fiscal policy immediately after an uncertainty shock, suggesting additional cau-
tion when thinking about the policy response to these types of events.

The secondary contribution of this paper is to analyze the importance of
jointly modelling labor and capital adjustment costs. For analytical tractability
and aggregation constraints the empirical literature has estimated either labor
or capital adjustment costs individually, assuming the other factor is flexible,
or estimated them jointly, assuming only convex adjustment costs.5 I jointly
estimate a mix of labor and capital adjustment costs (both convex and non-
convex) by exploiting the properties of homogeneous functions to reduce the
state space. The estimation uses simulated method of moments on firm-level
data to overcome the identification problem associated with the limited sample
size of macro data. I find moderate nonconvex labor adjustment costs and sub-
stantial nonconvex capital adjustment costs. I also find that assuming capital
adjustment costs only—as is standard in the investment literature—generates
an acceptable overall fit, while assuming labor adjustment costs only—as is
standard in the labor demand literature—produces a poor fit.

The analysis of uncertainty shocks links with the earlier work of Bernanke
(1983) and Hassler (1996) who highlighted the importance of variations in un-
certainty.6 In this paper I quantify and substantially extend their predictions
through two major advances: first, by introducing uncertainty as a stochas-
tic process which is critical for evaluating the high-frequency impact of major
shocks and, second, by considering a joint mix of labor and capital adjustment
costs which is critical for understanding the dynamics of employment, invest-
ment, and productivity.

This framework also suggests a range of future research. Looking at individ-
ual events, it could be used, for example, to analyze the uncertainty impact of
trade reforms, major deregulations, tax changes, or political elections. It also
suggests there is a trade-off between policy “correctness” and “decisiveness”—
it may be better to act decisively (but occasionally incorrectly) than to deliber-

5See, for example: on capital, Cooper and Haltiwanger (1993), Caballero, Engel, and Halti-
wanger (1995), Cooper, Haltiwanger, and Power (1999), and Cooper and Haltiwanger (2006); on
labor, Hammermesh (1989), Bertola and Bentolila (1990), Davis and Haltiwanger (1992), Ca-
ballero and Engel (1993), Caballero, Engel, and Haltiwanger (1997), and Cooper, Haltiwanger,
and Willis (2004); on joint estimation with convex adjustment costs, Shapiro (1986), Hall (2004),
and Merz and Yashiv (2007); see Bond and Van Reenen (2007) for a full survey of the literature.

6Bernanke developed an example of uncertainty in an oil cartel for capital investment, while
Hassler solved a model with time-varying uncertainty and fixed adjustment costs. There are of
course many other linked recent strands of literature, including work on growth and volatility
such as Ramey and Ramey (1995) and Aghion, Angeletos, Banerjee, and Manova (2005), on
investment and uncertainty such as Leahy and Whited (1996) and Bloom, Bond, and Van Reenen
(2007), on the business-cycle and uncertainty such as Barlevy (2004) and Gilchrist and Williams
(2005), on policy uncertainty such as Adda and Cooper (2000), and on income and consumption
uncertainty such as Meghir and Pistaferri (2004).
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ate on policy, generating policy-induced uncertainty. For example, when the
Federal Open Markets Committee discussed the negative impact of uncer-
tainty after 9/11 it noted that “A key uncertainty in the outlook for investment
spending was the outcome of the ongoing Congressional debate relating to tax
incentives for investment in equipment and software” (November 6th, 2001).
Hence, in this case Congress’s attempt to revive the economy with tax incen-
tives may have been counterproductive due to the increased uncertainty the
lengthy policy process induced.

More generally, the framework in this paper also provides one response to
the “where are the negative productivity shocks?” critique of real business cy-
cle theories.7 In particular, since second-moment shocks generate large falls in
output, employment, and productivity growth, it provides an alternative mech-
anism to first-moment shocks for generating recessions. Recessions could sim-
ply be periods of high uncertainty without negative productivity shocks. En-
couragingly, recessions do indeed appear in periods of significantly higher un-
certainty, suggesting an uncertainty approach to modelling business cycles (see
Bloom, Floetotto, and Jaimovich (2007)). Taking a longer-run perspective this
paper also links to the volatility and growth literature, given the large negative
impact of uncertainty on output and productivity growth.

The rest of the paper is organized as follows: in Section 2, I empirically in-
vestigate the importance of jumps in stock-market volatility; in Section 3, I set
up and solve my model of the firm; in Section 4, I characterize the solution of
the model and present the main simulation results; in Section 5, I outline my
simulated method of moments estimation approach and report the parameter
estimates using U.S. firm data; and in Section 6, I run some robustness test on
the simulation results. Finally, Section 7 offers some concluding remarks. Data
and programs are provided in an online supplement (Bloom (2009)).

2. DO JUMPS IN STOCK-MARKET VOLATILITY MATTER?

Two key questions to address before introducing any models of uncertainty
shocks are (i) do jumps8 in the volatility index in Figure 1 correlate with other
measures of uncertainty and (ii) do these have any impact on real economic
outcomes? In Section 2.1, I address the first question by presenting evidence
showing that stock-market volatility is strongly linked to other measures of pro-
ductivity and demand uncertainty. In Section 2.2, I address the second question
by presenting vector autoregression (VAR) estimations showing that volatil-
ity shocks generate a short-run drop in industrial production of 1%, lasting
about 6 months, and a longer-run overshoot. First-moment shocks to the in-
terest rates and stock-market levels generate a much more gradual drop and

7See the extensive discussion in King and Rebelo (1999).
8I tested for jumps in the volatility series using the bipower variation test of Barndorff-Nielsen

and Shephard (2006) and found statistically significant evidence for jumps. See Appendix A.1.
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rebound in activity lasting 2 to 3 years. A full data description for both sections
is contained in Appendix A.9

2.1. Empirical Evidence on the Links Between Stock-Market
Volatility and Uncertainty

The evidence presented in Table I shows that a number of cross-sectional
measures of uncertainty are highly correlated with time-series stock-market
volatility. Stock-market volatility has also been previously used as a proxy for
uncertainty at the firm level (e.g., Leahy and Whited (1996) and Bloom, Bond,
and Van Reenen (2007)).

Columns 1–3 of Table I use the cross-sectional standard deviation of firms’
pretax profit growth, taken from the quarterly accounts of public companies.
As can be seen from column 1 stock-market time-series volatility is strongly
correlated with the cross-sectional spread of firm-level profit growth. All vari-
ables in Table I have been normalized by their standard deviations (SD). The
coefficient implies that the 2.47 SD rise in stock-market time-series volatility
that occurred on average after the shocks highlighted in Figure 1 would be as-
sociated with a 1.31 SD (1�31 = 2�47 × 0�532) rise in the cross-sectional spread
of the growth rate of profits, a large increase. Column 2 reestimates this in-
cluding a full set of quarterly dummies and a time trend, finding very similar
results.10 Column 3 also includes quarterly standard industrial criterion (SIC)
three-digit industry controls and again finds similar results,11 suggesting that
idiosyncratic firm-level shocks are driving the time-series variations in volatil-
ity.

Columns 4–6 use a monthly cross-sectional stock-return measure and show
that this is also strongly correlated with the stock-return volatility index.
Columns 7 and 8 report the results from using the standard deviation of annual
five-factor Total Factor Productivity (TFP) growth within the National Bureau
of Economic Research (NBER) manufacturing industry data base. There is
also a large and significant correlation of the cross-sectional spread of industry
productivity growth and stock-market volatility. Finally, columns 9 and 10 use
a measure of the dispersion across macro forecasters over their predictions for
future gross domestic product (GDP), calculated from the Livingstone half-
yearly survey of professional forecasters. Once again, periods of high stock-
market volatility are significantly correlated with cross-sectional dispersion, in
this case in terms of disagreement across macro forecasters.

9All data and program files are also available at http://www.stanford.edu/~nbloom/.
10This helps to control for any secular changes in volatility (see Davis, Haltiwanger, Jarmin,

and Miranda (2006)).
11This addresses the type of concerns that Abraham and Katz (1986) raised about Lillien’s

(1982) work on unemployment, where time-series variations in cross-sectional unemployment
appeared to be driven by heterogeneous responses to common macro shocks.

http://www.stanford.edu/~nbloom/
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TABLE I

THE STOCK-MARKET VOLATILITY INDEX REGRESSED ON CROSS-SECTIONAL MEASURES OF UNCERTAINTYa

Explanatory Variable Is Period by Period
Cross-Sectional Standard Deviation of

Dependent Variable Is Stock-Market Volatilityb

1 2 3 4 5 6 7 8 9 10

Firm profit growth,c Compustat quarterly 0.532 0.526 0.469
(0.064) (0.092) (0.115)

Firm stock returns,d CRSP monthly 0.543 0.544 0.570
(0.037) (0.038) (0.037)

Industry TFP growth,e SIC 4-digit yearly 0.429 0.419
(0.119) (0.125)

GDP forecasts,f Livingstone half-yearly 0.614 0.579
(0.111) (0.121)

Time trend No Yes Yes No Yes Yes No Yes No Yes
Month/quarter/half-year dummiesg No Yes Yes No Yes Yes n/a n/a No Yes
Controls for SIC 3-digit industryh No No Yes No No Yes n/a n/a n/a n/a
R2 0.287 0.301 0.238 0.287 0.339 0.373 0.282 0.284 0.332 0.381
Time span 62Q3–05Q1 62M7–06M12 1962–1996 62H2–98H2
Average units in cross sectioni 327 355 425 57.4
Observations in regression 171 534 35 63

aEach column reports the coefficient from regressing the time series of stock-market volatility on the within period cross-sectional standard deviation (SD) of the explanatory
variable calculated from an underlying panel. All variables normalized to a SD of 1. Standard errors are given in italics in parentheses below. So, for example, column 1 reports
that the stock-market volatility index is on average 0.532 SD higher in a quarter when the cross-sectional spread of firms’ profit growth is 1 SD higher.

bThe stock-market volatility index measures monthly volatility on the U.S. stock market and is plotted in Figure 1. The quarterly, half-yearly, and annual values are calculated
by averaging across the months within the period.

cThe standard deviation of firm profit growth measures the within-quarter cross-sectional spread of profit growth rates normalized by average sales, defined as (profitst −
profitst−1)/(0�5 × salest + 0�5 × salest−1) and uses firms with 150+ quarters of data in Compustat quarterly accounts.

dThe standard deviation of firm stock returns measures the within month cross-sectional standard deviation of firm-level stock returns for firm with 500+ months of data in
the Center for Research in Securities Prices (CRSP) stock-returns file.

eThe standard deviation of industry TFP growth measures the within-year cross-industry spread of SIC 4-digit manufacturing TFP growth rates, calculated using the five-factor
TFP growth figures from the NBER data base.

fThe standard deviation of GDP forecasts comes from the Philadelphia Federal Reserve Bank’s biannual Livingstone survey, calculated as the (standard deviation/mean) of
forecasts of nominal GDP 1 year ahead, using half-years with 50+ forecasts, linearly detrended to remove a long-run downward drift.

gMonth/quarter/half-year dummies refers to quarter, month, and half-year controls for period effects.
hControls for SIC 3-digit industry denotes that the cross-sectional spread is calculated with SIC 3-digit by period dummies so the profit growth and stock returns are measured

relative to the industry period average.
iAverage units in cross section refers to the average number of units (firms, industries, or forecasters) used to measure the cross-sectional spread.
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2.2. VAR Estimates on the Impact of Stock-Market Volatility Shocks

To evaluate the impact of uncertainty shocks on real economic outcomes
I estimate a range of VARs on monthly data from June 1962 to June
2008.12 The variables in the estimation order are log(S&P500 stock mar-
ket index), a stock-market volatility indicator (described below), Federal
Funds Rate, log(average hourly earnings), log(consumer price index), hours,
log(employment), and log(industrial production). This ordering is based on
the assumptions that shocks instantaneously influence the stock market (levels
and volatility), then prices (wages, the consumer price index (CPI), and interest
rates), and finally quantities (hours, employment, and output). Including the
stock-market levels as the first variable in the VAR ensures the impact of stock-
market levels is already controlled for when looking at the impact of volatility
shocks. All variables are Hodrick–Prescott (HP) detrended (λ = 129,600) in
the baseline estimations.

The main stock-market volatility indicator is constructed to take a value 1
for each of the shocks labelled in Figure 1 and a 0 otherwise. These 17 shocks
were explicitly chosen as those events when the peak of HP detrended volatility
level rose significantly above the mean.13 This indicator function is used to en-
sure that identification comes only from these large, and arguably exogenous,
volatility shocks rather than from the smaller ongoing fluctuations.

Figure 2 plots the impulse response function of industrial production (the
solid line with plus symbols) to a volatility shock. Industrial production displays
a rapid fall of around 1% within 4 months, with a subsequent recovery and re-
bound from 7 months after the shock. The 1 standard-error bands (dashed
lines) are plotted around this, highlighting that this drop and rebound is sta-
tistically significant at the 5% level. For comparison to a first-moment shock,
the response to a 1% impulse to the Federal funds rate (FFR) is also plot-
ted (solid line with circular symbols), displaying a much more persistent drop
and recovery of up to 0.7% over the subsequent 2 years.14 Figure 3 repeats the
same exercise for employment, displaying a similar drop and recovery in activ-
ity. Figures A1, A2, and A3 in the Appendix confirm the robustness of these
VAR results to a range of alternative approaches over variable ordering, vari-
able inclusion, shock definitions, shock timing, and detrending. In particular,
these results are robust to identification from uncertainty shocks defined by
the 10 exogenous shocks arising from wars, OPEC shocks, and terror events.

12Note that this period excludes most of the Credit Crunch, which is too recent to have full
VAR data available. I would like to thank Valerie Ramey and Chris Sims (my discussants) for
their initial VAR estimations and subsequent discussions.

13The threshold was 1.65 standard deviations above the mean, selected as the 5% one-tailed
significance level treating each month as an independent observation. The VAR estimation also
uses the full volatility series (which does not require defining shocks) and finds very similar results,
as shown in Figure A1.

14The response to a 5% fall the stock-market levels (not plotted) is very similar in size and
magnitude to the response to a 1% rise in the FFR.



THE IMPACT OF UNCERTAINTY SHOCKS 631

FIGURE 2.—VAR estimation of the impact of a volatility shock on industrial production. Notes:
Dashed lines are 1 standard-error bands around the response to a volatility shock.

3. MODELLING THE IMPACT OF AN UNCERTAINTY SHOCK

In this section I model the impact of an uncertainty shock. I take a standard
model of the firm15 and extend it in two ways. First, I introduce uncertainty
as a stochastic process to evaluate the impact of the uncertainty shocks shown
in Figure 1. Second, I allow a joint mix of convex and nonconvex adjustment
costs for both labor and capital. The time-varying uncertainty interacts with

FIGURE 3.—VAR estimation of the impact of a volatility shock on employment. Notes: Dashed
lines are 1 standard-error bands around the response to a volatility shock.

15See, for example, Bertola and Caballero (1994), Abel and Eberly (1996), or Caballero and
Engel (1999).
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the nonconvex adjustment costs to generate time-varying real-option effects,
which drive fluctuations in hiring and investment. I also build in temporal and
cross-sectional aggregation by assuming firms own large numbers of produc-
tion units, which allows me to estimate the model’s parameters on firm-level
data.

3.1. The Production and Revenue Function

Each production unit has a Cobb–Douglas16 production function

F(Ã�K�L�H)= ÃKα(LH)1−α(3.1)

in productivity (Ã), capital (K), labor (L), and hours (H). The firm faces an
isoelastic demand curve with elasticity (ε),

Q = BP−ε�

where B is a (potentially stochastic) demand shifter. These can be combined
into a revenue function R(Ã�B�K�L�H)= Ã1−1/εB1/εKα(1−1/ε)(LH)(1−α)(1−1/ε).
For analytical tractability I define a= α(1−1/ε) and b = (1−α)(1−1/ε), and
substitute A1−a−b = Ã1−1/εB1/ε, where A combines the unit-level productivity
and demand terms into one index, which for expositional simplicity I will refer
to as business conditions. With these redefinitions we have17

S(A�K�L�H)=A1−a−bKa(LH)b�

Wages are determined by undertime and overtime hours around the standard
working week of 40 hours. Following the approach in Caballero and Engel
(1993), this is parameterized as w(H) = w1(1 + w2H

γ), where w1, w2, and γ
are parameters of the wage equation to be determined empirically.

3.2. The Stochastic Process for Demand and Productivity

I assume business conditions evolve as an augmented geometric random
walk. Uncertainty shocks are modelled as time variations in the standard devi-
ation of the driving process, consistent with the stochastic volatility measure of
uncertainty in Figure 1.

16While I assume a Cobb–Douglas production function, other supermodular homogeneous
unit revenue functions could be used. For example, when replacing (3.1) with a constant elas-
ticity of substitution aggregator over capital and labor, where F(Ã�K�L�H) = Ã(α1K

σ +
α2(LH)σ)1/σ , I obtained similar simulation results.

17This reformulation to A as the stochastic variable to yield a jointly homogeneous revenue
function avoids long-run effects of uncertainty reducing or increasing output because of convexity
or concavity in the production function. See Abel and Eberly (1996) for a discussion.
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Business conditions are in fact modelled as a multiplicative composite
of three separate random walks18: a macro-level component (AM

t ), a firm-
level component (AF

i�t), and a unit-level component (AU
i�j�t), where Ai�j�t =

AM
t A

F
i�tA

U
i�j�t and i indexes firms, j indexes units, and t indexes time. The macro-

level component is modelled as

AM
t =AM

t−1(1 + σt−1W
M
t )� W M

t ∼ N(0�1)�(3.2)

where σt is the standard deviation of business conditions and W M
t is a macro-

level independent and identically distributed (i.i.d.) normal shock. The firm-
level component is modelled as

AF
i�t = AF

i�t−1(1 +μi�t + σt−1W
F
i�t )� W F

i�t ∼ N(0�1)�(3.3)

where μi�t is a firm-level drift in business conditions and W F
i�t is a firm-level

i.i.d. normal shock. The unit-level component is modelled as

AU
i�j�t =AU

i�j�t−1(1 + σt−1W
U
i�j�t)� W U

i�j�t ∼N(0�1)�(3.4)

where W U
i�j�t is a unit-level i.i.d. normal shock. I assume W M

t , W F
i�t , and W U

i�j�t are
all independent of each other.

While this demand structure may seem complex, it is formulated to ensure
that (i) units within the same firm have linked investment behavior due to com-
mon firm-level business conditions, and (ii) they display some independent be-
havior due to the idiosyncratic unit-level shocks, which is essential for smooth-
ing under aggregation. This demand structure also assumes that macro-, firm-,
and unit-level uncertainty are the same.19 This is broadly consistent with the re-
sults from Table I for firm and macro uncertainty, which show these are highly

18A random-walk driving process is assumed for analytical tractability, in that it helps to deliver
a homogenous value function (details in the next section). It is also consistent with Gibrat’s law.
An equally plausible alternative assumption would be a persistent AR(1) process, such as the
following based on Cooper and Haltiwanger (2006): log(At) = α + ρ log(At−1) + vt , where vt ∼
N(0�σt−1), ρ = 0�885. To investigate this alternative I programmed another monthly simulation
with autoregressive business conditions and no labor adjustment costs (so I could drop the labor
state) and all other modelling assumptions the same. I found in this setup there were still large
real-options effects of uncertainty shocks on output, as plotted in Figure S1 in the supplemental
material (Bloom (2009)).

19This formulation also generates business-conditions shocks at the unit level (firm level) that
have three (two) times more variance than at the macro level. This appears to be inconsistent with
actual data, since establishment data on things like output and employment are many times more
volatile than the macro equivalent. However, it is worth noting two points. First, micro data also
typically have much more measurement error than macro data so this could be causing the much
greater variance of micro data. In stock-returns data, one of the few micro and macro indicators
with almost no measurement error, firm stock returns have twice the variance of aggregate returns
consistent with the modelling assumption. Second, because of the nonlinearities in the investment
and hiring response functions (due to nonconvex adjustment costs), output and input growth is
much more volatile at the unit level than at the macro level, which is smoothed by aggregation. So
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correlated. For unit-level uncertainty there is no direct evidence on this, but to
the extent that this assumption does not hold the quantitative impact of macro
uncertainty, shocks will be reduced (since total uncertainty will fluctuate less
than one for one with macro uncertainty), while the qualitative findings will
remain. I also evaluate this assumption in Section 6.3 by simulating an uncer-
tainty shock which only changes the variance of W M

t (rather than changing the
variance of W M

t , W F
i�t , and W U

i�j�t), with broadly similar results.
The firm-level business conditions drift (μi�t) is also assumed to be stochastic

to allow autocorrelated changes over time within firms. This is important for
empirically identifying adjustment costs from persistent differences in growth
rates across firms, as Section 5 discusses in more detail.

The stochastic volatility process (σ2
t ) and the demand conditions drift (μi�t)

are both assumed for simplicity to follow two-point Markov chains

σt ∈ {σL�σH}� where Pr(σt+1 = σj|σt = σk)= πσ
k�j�(3.5)

μi�t ∈ {μL�μH}� where Pr(μi�t+1 = μj|μi�t = μk)= πμ
k�j�(3.6)

3.3. Adjustment Costs

The third piece of technology that determines the firms’ activities is the ad-
justment costs. There is a large literature on investment and employment ad-
justment costs which typically focuses on three terms, all of which I include in
my specification:

Partial Irreversibilities: Labor partial irreversibility, labelled CP
L , derives from

per capita hiring, training, and firing costs, and is denominated as a fraction of
annual wages (at the standard working week). For simplicity I assume these
costs apply equally to gross hiring and gross firing of workers.20 Capital partial
irreversibilities arise from resale losses due to transactions costs, the market
for lemons phenomenon, and the physical costs of resale. The resale loss of
capital is labelled CP

K and is denominated as a fraction of the relative purchase
price of capital.

Fixed Disruption Costs: When new workers are added into the production
process and new capital is installed, there may be a fixed loss of output. For
example, adding workers may require fixed costs of advertising, interviewing,
and training, or the factory may need to close for a few days while a capital
refit is occurring. I model these fixed costs as CF

L and CF
K for hiring/firing and

investment, respectively, both denominated as fractions of annual sales.

even if the unit-, firm-, and macro-level business conditions processes all have the same variance,
the unit- and firm-level employment, capital, and sales growth outcomes will be more volatile due
to more lumpy hiring and investment.

20Micro data evidence, for example, Davis and Haltiwanger (1992), suggests both gross and net
hiring/firing costs may be present. For analytical simplicity I have restricted the model to gross
costs, noting that net costs could also be introduced and estimated in future research through the
addition of two net firing cost parameters.
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Quadratic Adjustment Costs: The costs of hiring/firing and investment may
also be related to the rate of adjustment due to higher costs for more rapid
changes, where CQ

LL(
E
L
)2 are the quadratic hiring/firing costs and E denotes

gross hiring/firing, and CQ
KK( I

K
)2 are the quadratic investment costs and I de-

notes gross investment.
The combination of all adjustment costs is given by the adjustment cost func-

tion

C(A�K�L�H�I�E�pK
t )

= 52w(40)CP
L(E

+ +E−)+ (I+ − (1 −CP
K)I

−)

+(
CF

L1{E �=0} +CF
K1{I �=0}

)
S(A�K�L�H)

+CQ
LL

(
E

L

)2

+CQ
KK

(
I

K

)2

�

where E+ (I+) and E− (I−) are the absolute values of positive and negative
hiring (investment), respectively, and 1{E �=0} and 1{I �=0} are indicator functions
which equal 1 if true and 0 otherwise. New labor and capital take one period
to enter production due to time to build. This assumption is made to allow me
to pre-optimize hours (explained in Section 3.5 below), but is unlikely to play
a major role in the simulations given the monthly periodicity. At the end of
each period there is labor attrition and capital depreciation proportionate to
δL and δK , respectively.

3.4. Dealing With Cross-Sectional and Time Aggregation

Gross hiring and investment is typically lumpy with frequent zeros in single-
plant establishment-level data, but much smoother and continuous in mul-
tiplant establishment and firm-level data. This appears to be because of ex-
tensive aggregation across two dimensions: cross-sectional aggregation across
types of capital and production plants; and temporal aggregation across higher-
frequency periods within each year. I build this aggregation into the model by
explicitly assuming that firms own a large number of production units and that
these operate at a higher frequency than yearly. The units can be thought of
as different production plants, different geographic or product markets, or dif-
ferent divisions within the same firm.

To solve this model I need to define the relationship between production
units within the firm. This requires several simplifying assumptions to ensure
analytical tractability. These are not attractive, but are necessary to enable me
to derive numerical results and incorporate aggregation into the model. In do-
ing this I follow the general stochastic aggregation approach of Bertola and
Caballero (1994) and Caballero and Engel (1999) in modelling macro and in-
dustry investment, respectively, and most specifically Abel and Eberly (2002)
in modelling firm-level investment.
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Production units are assumed to independently optimize to determine in-
vestment and employment. Thus, all linkages across units within the same firm
are modelled by the common shocks to demand, uncertainty, or the price of
capital. So, to the extent that units are linked over and above these common
shocks, the implicit assumption is that they independently optimize due to
bounded rationality and/or localized incentive mechanisms (i.e., managers be-
ing assessed only on their own unit’s profit and loss account).21

In the simulation the number of units per firm is set at 250. This number
was obtained from two pieces of analysis. First, I estimated the number of pro-
duction units in my Compustat firms. To do this I started with the work of
Davis et al. (2006), showing that Compustat firms with 500+ employees (in the
Census Bureau data) have on average 185 establishments each in the United
States.22 Their sample is similar to mine, which has Compustat firms with 500+
employees and $10m+ of sales (details in Section 5.4). I then used the results
of Bloom, Schankerman, and Van Reenen (2007), who used Bureau Van Dijk
data to show that for a sample of 715 Compustat firms, 61.5% of their sub-
sidiaries are located overseas. Again, their sample is similar to mine, having a
median of 3839 employees compared to 3450 for my sample. Combining these
facts suggests that—if the number of establishments per subsidiary is approxi-
mately the same overseas as in the United States—the Compustat firms in my
sample should have around 480 establishments: about 185 in the United States
and about 295 overseas (295 = 185 × 61�5/(100 − 61�5)).

Second, the simulation results are insensitive to the number of units once
firms have 250 or more units. The reason is that with 250 units, the firm is
effectively smoothed across independent unit-level shocks, so that more units
do not materially change the simulation moments. Since running simulations
with large numbers of units is computationally intensive, I used 250 units as a
good approximation to the 480 units my firms approximately have on average.

Of course this assumption on 250 units per firm will have a direct effect on
the estimated adjustment costs (since aggregation and adjustment costs are
both sources of smoothing) and thereby have an indirect effect on the simula-
tion. Hence, in Section 5 I reestimate the adjustment costs, assuming instead
the firm has 1 and 25 units to investigate this further.

The model also assumes no entry or exit for analytical tractability. This seems
acceptable in the monthly time frame (entry/exit accounts for around 2% of
employment on an annual basis), but is an important assumption to explore in
future research. My intuition is that relaxing this assumption should increase

21The semiindependent operation of plants may be theoretically optimal for incentive reasons
(to motivate local managers) and technical reasons (the complexity of centralized information
gathering and processing). The empirical evidence on decentralization in U.S. firms suggests that
plant managers have substantial hiring and investment discretion (see, for example, Bloom and
Van Reenen (2007) and Bloom, Sadun, and Van Reenen (2008)).

22I wish to thank Javier Miranda for helping with these figures.
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the effect of uncertainty shocks, since entry and exit decisions are extremely
nonconvex, although this may have some offsetting effects through the estima-
tion of slightly “smoother” adjustment costs.

There is also the issue of time-series aggregation. Shocks and decisions in a
typical business unit are likely to occur at a much higher frequency than an-
nually, so annual data will be temporally aggregated, and I need to explicitly
model this. There is little information on the frequency of decision making in
firms. The anecdotal evidence suggests monthly frequencies are typical, due
to the need for senior managers to schedule regular meetings, which I assume
in my main results.23 Section 5.7 undertakes some robustness tests on this as-
sumption and finds that time aggregation is actually quite important. This high-
lights the importance of obtaining better data on decision making frequency
for future research.

3.5. Optimal Investment and Employment

The optimization problem is to maximize the present discounted flow of rev-
enues less the wage bill and adjustment costs. As noted above, each unit within
the firm is assumed to optimize independently. Units are also assumed to be
risk neutral to focus on the real-options effects of uncertainty.

Analytical methods suggest that a unique solution to the unit’s optimization
problem exists that is continuous and strictly increasing in (A�K�L) with an
almost everywhere unique policy function.24 The model is too complex, how-
ever, to be fully solved using analytical methods, so I use numerical methods,
knowing that this solution is convergent with the unique analytical solution.

Given current computing power, however, I have too many state and control
variables to solve the problem as stated, but the optimization problem can be
substantially simplified in two steps. First, hours are a flexible factor of produc-
tion and depend only on the variables (A�K�L), which are predetermined in
period t given the time to build assumption. Therefore, hours can be optimized
out in a prior step, which reduces the control space by one dimension. Second,
the revenue function, adjustment cost function, depreciation schedules, and
demand processes are all jointly homogenous of degree 1 in (A�K�L), allow-
ing the whole problem to be normalized by one state variable, reducing the
state space by one dimension.25 I normalize by capital to operate on A

K
and L

K
.

These two steps dramatically speed up the numerical simulation, which is run

23Note that even if shocks continuously hit the firm, if decision making only happens monthly,
then there is no loss of generality from assuming a monthly shock process.

24The application of Stokey and Lucas (1989) for the continuous, concave, and almost surely
bounded normalized returns and cost function in (3.7) for quadratic adjustment costs and partial
irreversibilities, and Caballero and Leahy (1996) for the extension to fixed costs.

25The key to this homogeneity result is the random-walk assumption on the demand process.
Adjustment costs and depreciation are naturally scaled by unit size, since otherwise units would
“outgrow” adjustment costs and depreciation. The demand function is homogeneous through the
trivial renormalization A1−a−b = Ã1−1/εB1/ε.



638 NICHOLAS BLOOM

on a state space of (A
K
� L
K
�σ�μ), making numerical estimation feasible. Appen-

dix B contains a description of the numerical solution method.
The Bellman equation of the optimization problem before simplification

(dropping the unit subscripts) can be stated as

V (At�Kt�Lt�σt�μt)

= max
It �Et �Ht

{
S(At�Kt�Lt�Ht)−C(At�Kt�Lt�Ht� It�Et)−w(Ht)Lt

+ 1
1 + r

E
[
V (At+1�Kt(1 − δK)+ It�Lt(1 − δL)

+Et�σt+1�μt+1)
]}

�

where r is the discount rate and E[·] is the expectation operator. Optimizing
over hours and exploiting the homogeneity in (A�K�L) to take out a factor
of Kt enables this to be rewritten as

Q(at� lt�σt�μt) = max
it �et

{
S∗(at� lt)−C∗(at� lt� it� ltet)(3.7)

+ 1 − δK + it

1 + r
E[Q(at+1� lt+1�σt+1�μt+1)]

}
�

where the normalized variables are lt = Lt/Kt , at =At/Kt , it = It/Kt , and et =
Et/Lt , S∗(at� lt) and C∗(at� lt� it� ltet) are sales and costs after optimization over
hours, and Q(at� lt�σt�μt)= V (at�1� lt�σt�μt), which is Tobin’s Q.

4. THE MODEL’S SOLUTION AND SIMULATING AN UNCERTAINTY SHOCK

In this section I present the main results of the model and the uncertainty
simulations. I do this before detailing the parameter values to enable readers
to get to the main results more quickly. I list all the parameter values in Tables
II and III and discuss how I obtained them in Section 5. Simulation parameter
robustness tests can be found in Section 6.

4.1. The Model’s Solution

The model yields a central region of inaction in (A
K
� A

L
) space, due to the non-

convex costs of adjustment. Units only hire and invest when business conditions
are sufficiently good, and only fire and disinvest when they are sufficiently bad.
When uncertainty is higher, these thresholds move out: units become more
cautious in responding to business conditions.

To provide some graphical intuition, Figure 4 plots in (A
K
� A

L
) space the val-

ues of the fire and hire thresholds (left and right lines) and the sell and buy
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TABLE II

PREDEFINED PARAMETERS IN THE MODEL

Parameter Value Rationale (Also See the Text)

α 1/3 Capital share in output is one-third, labor share is two-thirds.
ε 4 33% markup. With constant returns to scale yields a + b = 0�75.

I also try a 20% markup to yield a+ b = 0�833.
w1 0�8 Hourly wages minimized at a 40 hour week.
w2 2�4e–9 Arbitrary scaling parameter. Set so the wage bill equals unity at

40 hours.
σH 2 × σL Uncertainty shocks 2× baseline uncertainty (Figure 1 data). σL es-

timated. I also try 1.5× and 3× baseline shocks.
πσ

L�H 1/36 Uncertainty shocks expected every 3 years (17 shocks in 46 years in
Figure 1).

πσ
H�H 0�71 Average 2-month half-life of an uncertainty shock (Figure 1 data).

I also try 1 and 6 month half-lives.
(μH +μL)/2 0�02 Average real growth rate equals 2% per year. The spread μH −μL

is estimated.
πμ

L�H π
μ
H�L Firm-level demand growth transition matrix assumed symmetric.

The parameter πμ
H�L estimated.

δK 0�1 Capital depreciation rate assumed 10% per year.
δL 0�1 Labor attrition assumed 10% for numerical speed (since δL = δK).

I also try δL = 0�2.
r 6�5% Long-run average value for U.S. firm-level discount rate (King and

Rebello (1999)).
N 250 Firms operate 250 units, chosen to match data on establishments

per firm. I also try N = 25 and N = 1.

capital thresholds (top and bottom lines) for low uncertainty (σL) and the pre-
ferred parameter estimates in Table III column All. The inner region is the
region of inaction (i = 0 and e = 0), where the real-option value of waiting is
worth more than the returns to investment and/or hiring. Outside the region
of inaction, investment and hiring will be taking place according to the optimal
values of i and e. This diagram is a two-dimensional (two-factor) version of the
one-dimensional investment models of Abel and Eberly (1996) and Caballero
and Leahy (1996). The gap between the investment/disinvestment thresholds
is higher than between the hire/fire thresholds due to the higher adjustment
costs of capital.

Figure 5 displays the same lines for both low uncertainty (the inner box of
lines) and high uncertainty (the outer box of lines). It can be seen that the
comparative static intuition that higher uncertainty increases real options is
confirmed here, suggesting that large changes in σt can have an important im-
pact on investment and hiring behavior.

To quantify the impact of these real-option values I ran the thought exper-
iment of calculating what temporary fall in wages and interest rates would be
required to keep units hiring and investment thresholds unchanged when un-



640 NICHOLAS BLOOM

FIGURE 4.—Hiring/firing and investment/disinvestment thresholds. Simulated thresholds us-
ing the adjustment cost estimates from the column All in Table III. Although the optimal policies
are of the (s� S) type, it cannot be proven that this is always the case.

certainty temporarily rises from σL to σH . The required wage and interest rate
falls turn out to be quantitatively large: units would need a 25% reduction in
wages in periods of high uncertainty to leave their marginal hiring decisions un-
changed and a 7% (700 basis point) reduction in the interest rates in periods
of high uncertainty to leave their marginal investment decisions unchanged.26

The reason this uncertainty effect is so large is that labor and capital adjust-
ment costs lead units to be cautious about hiring and investing. It is expensive
to hire and then rapidly fire a worker or to buy a piece of equipment and then
quickly resell it. So when uncertainty is high, units optimally postpone hiring
and investment decisions for a few months until business conditions become
clearer.

26This can be graphically seen in supplemental material Figure S2, which plots the low and high
uncertainty thresholds, but with the change that when σt = σH , interest rates are 7 percentage
points lower and wage rates are 25% lower than when σt = σL.
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FIGURE 5.—Thresholds at low and high uncertainty. Simulated thresholds using the adjust-
ment cost estimates from the column All in Table III. High uncertainty is twice the value of low
uncertainty (σH = 2 × σL).

Interestingly, recomputing these thresholds with permanent (time invariant)
differences in uncertainty results in an even stronger impact on the invest-
ment and employment thresholds. So the standard comparative static result
on changes in uncertainty will tend to overpredict the expected impact of time
changing uncertainty. The reason is that units evaluate the uncertainty of their
discounted value of marginal returns over the lifetime of an investment or
hire, so high current uncertainty only matters to the extent that it drives up
long-run uncertainty. When uncertainty is mean reverting, high current val-
ues have a lower impact on expected long-run values than if uncertainty were
constant.

Figure 6 shows a one-dimensional cut of Figure 4 (using the same x-axis),
with the level of hiring/firing (solid line, left y-axis) and cross-sectional density
of units (dashed line, right y-axis) plotted. These are drawn for one illustrative
set of parameters: baseline uncertainty (σL), high demand growth (μH), and
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FIGURE 6.—The distribution of units between the hiring and firing thresholds. The hiring re-
sponse (solid line) and unit-level density (dashed line) for low uncertainty (σL), high drift (μH),
and the most common capital/labor (K/L) ratio. The distribution of units in (A/L) space is
skewed to the right because productivity growth generates an upward drift in A and attrition
generates a downward drift in L. The density peaks internally because of lumpy hiring due to
fixed costs.

the modal value of capital/labor.27 Three things stand out: first, the distribu-
tion is skewed to the right due to positive demand growth and labor attrition;
second, the density just below the hiring threshold is low because whenever
the unit hits the hiring threshold, it undertakes a burst of activity (due to hiring
fixed costs) that moves it to the interior of the space; and third, the density
peaks at the interior which reflects the level of hiring that is optimally under-
taken at the hiring threshold.

4.2. The Simulation Outline

The simulation models the impact of a large, but temporary, rise in the vari-
ance of business-conditions (productivity and demand) growth. This second-
moment shock generates a rapid drop in hiring, investment, and productivity

27Figure 6 is actually a 45◦ cut across Figure 4. The reason is Figure 6 holds K/L constant
while allowing A to vary.
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growth as units become much more cautious due to the rise in uncertainty.
Once the uncertainty shock passes, however, activity bounces back as units
clear their pent-up demand for labor and capital. This also leads to a drop and
rebound in productivity growth, since the temporary pause in activity slows
down the reallocation of labor and capital from low to high productivity units.
In the medium term this burst of volatility generates an overshoot in activity
due to the convexity of hiring and investment in business conditions.

Of course this is a stylized simulation, since other factors also typically
change around major shocks. Some of these factors can and will be added to
the simulation, for example allowing for a simultaneous negative shock to the
first moment. I start by focusing on a second-moment shock only, however, to
isolate the pure uncertainty effects and demonstrate that these alone are capa-
ble of generating large short-run fluctuations. I then discuss the robustness of
this analysis to price changes from general equilibrium effects and a combined
first- and second-moment shock. In Section 6 I also show robustness to a range
of different parameter values, including adjustment costs and the stochastic
process for uncertainty.

4.3. The Baseline Simulation

I simulate an economy of 1000 units (four firms) for 15 years at a monthly
frequency. This simulation is then repeated 25,000 times, with the values for
labor, capital, output, and productivity averaged over all these runs. In each
simulation the model is hit with an uncertainty shock in month 1 of year 11,
defined as σt = σH in equation (3.5). All other micro and macro shocks are
randomly drawn as per Section 3. This generates the average impact of an un-
certainty shock, where the average is taken over the distribution of micro and
macro shocks. There are both fixed cost and partial irreversibility adjustment
costs for labor and capital, which are estimated from Compustat data as ex-
plained in Section 5 (in particular see the All column in Table III).

Before presenting the simulation results, it is worth first showing the precise
impulse that will drive the results. Figure 7a reports the average value of σt

normalized to unity before the shock. It is plotted on a monthly basis, with the
month normalized to zero on the date of the shock. Three things are clear from
Figure 7a: first, the uncertainty shock generates a sharp spike in the average σt

across the 25,000 simulations; second, this dies off rapidly with a half-life of
2 months; and third, the shock almost doubles average σt (the rise is less than
100% because some of the 25,000 simulations already had σt = σH when the
shock occurred). In Figure 7b I show the average time path of business condi-
tions (Aj�t), showing that the uncertainty shock has no first-moment effect.

In Figure 8, I plot aggregate detrended labor, again normalized to 1 at the
month before the shock. This displays a substantial fall in the 6 months imme-
diately after the uncertainty shock and then overshoots from month 8 onward,
eventually returning to level by around 3 years.
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FIGURE 7A.—The simulation has a large second-moment shock.

The initial drop occurs because the rise in uncertainty increases the real-
option value of inaction, leading the majority of units to temporarily freeze

FIGURE 7B.—The simulation has no first moment shock.
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FIGURE 8.—Aggregate (detrended) labor drops, rebounds, and overshoots. The aggregate fig-
ures for Lt are calculated by summing across all units within the simulation.

hiring. Because of the ongoing exogenous attrition of workers, this generates
a fall in net employment. Endogenizing quits would of course reduce the im-
pact of these shocks, since the quit rate would presumably fall after a shock.
In the model, to offset this I have conservatively assumed a 10% annual quit
rate—well below the 15% to 25% quit rate observed over the business cycle
in recent Job Openings and Labor Turnover Survey (JOLTS) data (see Davis,
Faberman, and Haltiwanger (2006)). This low fixed quit rate could be thought
of as the exogenous component due to retirement, maternity, sickness, family
relocation, and so forth.

The rebound from month 4 onward occurs because of the combination of
falling uncertainty (since the shock is only temporary) and rising pent-up de-
mand for hiring (because units paused hiring over the previous 3 months). To
make up the shortfall in labor, units begin to hire at a faster pace than usual
so the labor force heads back toward its trend level. This generates the rapid
rebound in the total labor from month 3 until about month 6.

4.4. The Volatility Overshoot

One seemingly puzzling phenomenon, however, is the overshoot from month
7 onward. Pure real-options effects of uncertainty should generate a drop and
overshoot in the growth rate of labor (that is the hiring rate), but only a drop
and convergence back to trend in the level of the labor force. So the ques-
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tion is what is causing this medium-term overshoot in the level of the labor
force?

This medium-term overshoot arises because the increased volatility of busi-
ness conditions leads more units to hit both the hiring and firing thresholds.
Since more units are clustered around the hiring threshold than the firing
threshold, due to labor attrition and business-conditions growth (see Figure 6),
this leads to a medium-term burst of net hiring. In effect hiring is convex in
productivity just below the hiring threshold—units that receive a small posi-
tive shock hire and units that receive a small negative shock do not respond.
So total hiring rises in the medium term with the increased volatility of pro-
ductivity growth. Of course once units have undertaken a burst of hiring, they
jump to the interior of the region of inaction and so do not hire again for
some time. So in the long-run this results in labor falling back to its long-run
trend path. I label this phenomenon the volatility overshoot, since this medium-
term hiring boom is induced by the higher unit-level volatility of business-
conditions.28

Thus, the effect of a rise in σt is twofold. First, the real-options effect from
increased uncertainty over future business conditions causes an initial drop in
activity as units pause investment and hiring. This happens rapidly since ex-
pectations change upon impact of the uncertainty shock, so that hiring and
investment instantly freeze. Second, the effect from increased volatility of re-
alized business conditions causes a medium-term hiring boom. This takes more
time to occur because it is driven by the rise in the realized volatility of pro-
ductivity growth. This rise in volatility accrues over several months. Thus, the
uncertainty drop always precedes the volatility overshoot.

These distinct uncertainty and volatility effects are shown in Figure 9. This
splits out the expectational effects of higher σt from the realized volatility ef-
fects of higher σt . These simulations are shown for 36 months after the shock to
highlight the long-run differences between these effects.29 The uncertainty ef-
fect is simulated by allowing unit expectations over σt to change after the shock
(as in the baseline) but holds the variance of the actual draw of shocks constant.

28This initially appears similar to the type of “echo effect” that appears in demand for products
like cars in response to demand shocks, but these echo effects are actually quite distinct from a
volatility overshoot. In the echo effect case, what arises is a lumpy response to a first-moment
shock. The fixed costs of adjustment lead to a burst of investment, with subsequent future bursts
(echo effects). This can arise in models with one representative agent and perfect certainty, but
requires lump-sum adjustment costs. The volatility overshoot in this paper arises from time vari-
ation is the cross-sectional distribution, leading to an initial overshoot and then a gradual return
to trend. This can arise in a model with no lump-sum adjustment costs (for example, partial ir-
reversibility is sufficient), but it does require a cross section of agents and time variation in the
second moment.

29In general, I plot response for the first 12 months due to the partial equilibrium nature of the
analysis, unless longer-run plots are expositionally helpful.
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FIGURE 9.—Separating out the uncertainty and volatility effects. The baseline plot is the same
as in Figure 8 but extended out for 36 months. For the volatility effect only plot, firms have
expectations set to σt = σL in all periods (i.e., uncertainty effects are turned off), while in the
uncertainty effect only, they have the actual shocks drawn from a distribution σt = σL in all
periods (i.e., the volatility effects are turned off).

This generates a drop and rebound back to levels, but no volatility overshoot.
The volatility effect is simulated by holding unit expectations over σt constant
but allowing the realized volatility of the business conditions to change after
the shock (as in the baseline). This generates a volatility overshoot, but no ini-
tial drop in activity from a pause in hiring.30 The baseline figure in the graph
is simply the aggregate detrended labor (as in Figure 8). This suggests that un-
certainty and volatility have very different effects on economic activity, despite
often being driven by the same underlying phenomena.

The response of aggregate capital to the uncertainty shock is similar to la-
bor. There is a short-run drop in capital as units postpone investing, followed
by a rebound as they address their pent-up demand for investment, and a sub-
sequent volatility driven overshoot (see supplementary material Figure S3).

30In the figure, the volatility effects also take 1 extra month to begin. This is simply because
of the standard finance timing assumption in (3.2) that σt−1 drives the volatility of Aj�t . Allowing
volatility to be driven by σt delivers similar results because in the short run the uncertainty effect
of moving out the hiring and investment thresholds dominates.
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4.5. Why Uncertainty Reduces Productivity Growth

Figure 10a plots the time series for the growth of aggregate productivity,
defined as

∑
j Aj�tLj�t , where the sum is taken over all j production units in

the economy in month t. In this calculation the growth of business conditions
(Aj�t) can be used as a proxy for the growth of productivity under the assump-
tion that shocks to demand are small in comparison to productivity (or that
the shocks are independent). Following Baily, Hulten, and Campbell (1992),
I define three indices as follows31:∑

Aj�tLj�t −
∑

Aj�t−1Lj�t−1∑
Aj�t−1Lj�t−1︸ ︷︷ ︸

aggregate productivity growth

=
∑

(Aj�t −Aj�t−1)Lj�t−1∑
Aj�t−1Lj�t−1︸ ︷︷ ︸

within productivity growth

+
∑

Aj�t(Lj�t −Lj�t−1)∑
Aj�t−1Lj�t−1︸ ︷︷ ︸

reallocation productivity growth

�

The first term, aggregate productivity growth, is the increase in productivity
weighted by employment across units. This can be broken down into two sub-
terms: within productivity growth, which measures the productivity increase
within each production unit (holding the employment of each unit constant),
and reallocation productivity growth, which measures the reallocation of em-
ployment from low to high productivity units (holding the productivity of each
unit constant).

In Figure 10a aggregate productivity growth shows a large fall after the un-
certainty shock. The reason is that uncertainty reduces the shrinkage of low
productivity units and the expansion of high productivity units, reducing the re-
allocation of resources toward more productive units.32 This reallocation from
low to high productivity units drives the majority of productivity growth in the
model so that higher uncertainty has a first-order effect on productivity growth.
This is clear from the decomposition which shows that the fall in total is entirely
driven by the fall in the reallocation term. The within term is constant since, by
assumption, the first moment of the demand conditions shocks is unchanged.33

31Strictly speaking, Bailey, Hulten, and Campbell (1992) defined four terms, but for simplicity
I have combined the between and cross terms into a reallocation term.

32Formally there is no reallocation in the model because it is partial equilibrium. However, with
the large distribution of contracting and expanding units all experiencing independent shocks,
gross changes in unit factor demand are far larger than net changes, with the difference equivalent
to reallocation.

33These plots are not completely smooth because the terms are summations of functions which
are approximately squared in Aj�t . For example Aj�tLj�t ≈ λA2

j�t for some scalar λ since Li�t is ap-
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FIGURE 10A.—Aggregate productivity growth falls and rebounds after the shock.

FIGURE 10B.—Unit level productivity and hiring for the period before the uncertainty shock.
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FIGURE 10C.—Unit level productivity and hiring in the period after the uncertainty shock.

In the bottom two panels this reallocative effect is illustrated by two unit-level
scatter plots of gross hiring against log productivity in the month before the
shock (Figure 10b) and the month after the shock (Figure 10c). It can be seen
that after the shock much less reallocative activity takes place with a substan-
tially lower fraction of expanding productive units and shrinking unproductive
units. Since actual U.S. aggregate productivity growth appears to be 70% to
80% driven by reallocation,34 these uncertainty effects should play an impor-
tant role in the real impact of large uncertainty shocks.

Figure 11 plots the level of an alternative productivity measure—Solow pro-
ductivity. This is defined as aggregate output divided by factor share weighted
aggregate inputs:

Solow aggregate productivity

=

∑
j

A1/(ε−1)
j�t Kα

j�t(Lj�t ×Hj�t)
1−α

α
∑
j

Kj�t + (1 − α)
∑
j

Lj�t ×Hj�t

�

proximately linear in Aj�t . Combined with the random-walk nature of the driving process (which
means some individual units grow very large), this results in lumpy aggregate productivity growth
even in very large samples of units.

34Foster, Haltiwanger, and Krizan (2000, 2006) reported that reallocation, broadly defined to
include entry and exit, accounts for around 50% of manufacturing and 90% of retail productivity
growth. These figures will in fact underestimate the full contribution of reallocation since they
miss the within establishment reallocation, which Bernard, Redding, and Schott’s (2006) results
on product switching suggests could be substantial.
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FIGURE 11.—Solow aggregate productivity (detrended) drops, rebounds, and overshoots.
Solow productivity is defined as aggregate output divided by the factor share weighted aggregate
inputs.

I report this series because macro productivity measures are typically calcu-
lated in this way using only macro data (note that the previous aggregate pro-
ductivity measure would require micro data to calculate). As can be seen in
Figure 11, the detrended Solow productivity series also falls and rebounds af-
ter the uncertainty shock. Again, this initial drop and rebound is because of the
initial pause and subsequent catch-up in the level of reallocation across units
immediately after the uncertainty shock. The medium-run overshoot is again
due to the increased level of cross-sectional volatility, which increases the po-
tential for reallocation, leading to higher aggregate medium-term productivity
growth.

Finally, Figure 12 plots the effects of an uncertainty shock on output. This
shows a clear drop, rebound, and overshoot, very similar to the behavior of the
labor, capital, and productivity. What is striking about Figure 12 is the similar-
ity of the size, duration, and time profile of the simulated response to an un-
certainty shock compared to the VAR results on actual data shown in Figure 2.
In particular, both the simulated and actual data show a drop of detrended ac-
tivity of around 1% to 2% after about 3 months, a return to trend at around 6
months, and a longer-run gradual overshoot.
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FIGURE 12.—Aggregate (detrended) output drops, rebounds, and overshoots.

4.6. Investigating Robustness to General Equilibrium

Ideally I would set up my model within a general equilibrium (GE) frame-
work, allowing prices to endogenously change. This could be done, for exam-
ple, by assuming agents approximate the cross-sectional distribution of units
within the economy using a finite set of moments and then using these mo-
ments in a representative consumer framework to compute a recursive com-
petitive equilibrium (see, for example, Krusell and Smith (1998), Khan and
Thomas (2003), and Bachman, Caballero, and Engel (2008)). However, this
would involve another loop in the routine to match the labor, capital, and out-
put markets between units and the consumer, making the program too slow
to then loop in the simulated method of moments estimation routine. Hence,
there is a trade-off between two options: (i) a GE model with flexible prices
but assumed adjustment costs35 and (ii) estimated adjustment costs but in a
fixed price model. Since the effects of uncertainty are sensitive to the nature of
adjustment costs, I chose to take the second option and leave GE analysis to
future work.

35Unfortunately there are no “off the shelf” adjustment cost estimates that can be used, since
no paper has previously jointly estimated convex and nonconvex labor and capital adjustment
costs.
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This means the results in this model could be compromised by GE effects if
factor prices changed sufficiently to counteract factor demand changes.36 One
way to investigate this is to estimate the actual changes in wages, prices, and
interest rates that arise after a stock-market volatility shock and feed them
into the model in an expectations consistent way. If these empirically plausi-
ble changes in factor prices radically changed these results, this would suggest
they are not robust to GE, while if they have only a small impact, it is more
reassuring on GE robustness.

To do this I use the estimated changes in factor prices from the VAR (see
Section 2.2), which are plotted in Figure 13. An uncertainty shock leads to a
short-run drop and rebound of interest rates of up to 1.1% points (110 basis
point), of prices of up to 0.5%, and of wages of up to 0.3%. I take these num-
bers and structurally build them into the model so that when σt = σH , interest

FIGURE 13.—VAR estimation of the impact of a volatility shock on prices. Notes: VAR
Cholesky orthogonalized impulse response functions to a volatility shock. Estimated monthly
from June 1962 to June 2008. Impact on the Federal Funds rate is plotted as a percentage point
change so the shock reduces rates by up to 110 basis points. The impact on the CPI and wages is
plotted as percentage change.

36Khan and Thomas (2008) found in their micro to macro investment model that with
GE, the response of the economy to productivity shocks is not influenced by the presence
of nonconvex adjustment costs. With a slight abuse of notation this can be characterized as
(∂(∂Kt/∂At))/∂NC ≈ 0, where Kt is aggregate capital, At is aggregate productivity, and NC
are nonconvex adjustment costs. The focus of my paper on the direct impact of uncertainty on
aggregate variables is different and can be characterized instead as ∂Kt/∂σt . Thus, their results
are not necessarily inconsistent with mine. More recent work by Bachman, Caballero, and En-
gel (2008), found their results depend on the choice of parameter values. Sim (2006) built a GE
model with capital adjustment costs and time-varying uncertainty and found that the impact of
temporary increases in uncertainty on investment is robust to GE effects.
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FIGURE 14.—Aggregate (detrended) output: partial equilibrium and pseudo GE. Pseudo-GE
allows interest rates, wages, and prices to be 1.1% points, 0.5%, and 0.3%, respectively, lower
during periods of high uncertainty.

rates are 1.1% lower, prices (of output and capital) are 0.5% lower, and wages
are 0.3% lower. Units expect this to occur, so expectations are rational.

In Figure 14, I plot the level of output after an uncertainty shock with and
without these “pseudo-GE” prices changes. This reveals two surprising out-
comes: first, the effects of these empirically reasonable changes in interest
rates, prices, and wages have very little impact on output in the immediate after-
math of an uncertainty shock; and second, the limited pseudo-GE effects that
do occur are greatest at around 3–5 months, when the level of uncertainty (and
so the level of the interest rate, price, and wage reductions) is much smaller. To
highlight the surprising nature of these two findings, Figure S4 (supplemental
material) plots the impact of the pseudo-GE price effects on capital, labor, and
output in a simulation without adjustment costs. In the absence of any adjust-
ment costs, these interest rate, prices, and wages changes do have an extremely
large effect. So the introduction of adjustment costs both dampens and delays
the response of the economy to the pseudo-GE price changes.

The reason for this limited impact of pseudo-GE price changes is that af-
ter an uncertainty shock occurs, the hiring/firing and investment/disinvestment
thresholds jump out, as shown in Figure 5. As a result there are no units near
any of the response thresholds. This makes the economy insensitive to changes
in interest rates, prices, or wages. The only way to get an impact would be to
shift the thresholds back to the original low uncertainty position where the ma-
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jority of units are located, but as noted in Section 4.1 the quantitative impact of
these uncertainty shocks is equivalent to something like a 7% (700 basis point)
higher interest rate and a 25% higher wage rate, so these pseudo-GE price re-
ductions of 1.1% in interest rates, 0.5% in prices, and 0.3% in wages are not
sufficient to do this.

Of course once the level of uncertainty starts to fall back again, the hir-
ing/firing and investment/disinvestment thresholds begin to move back toward
their low uncertainty values. This means they start to move back toward the
region in (A/K) and (A/L) space where the units are located, so the economy
becomes more sensitive to changes in interest rates, prices, and wages. Thus,
these pseudo-GE price effects start to play a role, but only with a lag.

In summary, the rise in uncertainty not only reduces levels of labor, capi-
tal, productivity, and output, but it also makes the economy temporarily ex-
tremely insensitive to changes in factor prices. This is the macro equivalent to
the “cautionary effects” of uncertainty demonstrated on firm-level panel data
by Bloom, Bond, and Van Reenen (2007).

For policymakers this is important since it suggests a monetary or fiscal re-
sponse to an uncertainty shock is likely to have almost no impact in the imme-
diate aftermath of a shock. But as uncertainty falls back down and the economy
rebounds, it will become more responsive, so any response to policy will occur
with a lag. Hence, a policymaker trying, for example, to cut interest rates to
counteract the fall in output after an uncertainty shock would find no imme-
diate response, but rather a delayed response when the economy was already
starting to recover. This cautions against using first-moment policy levers to
respond to the second-moment component of shocks; policies aimed directly
at reducing the underlying increase in uncertainty are likely to be far more
effective.

4.7. A Combined First- and Second-Moment Shock

All the large macro shocks highlighted in Figure 1 comprise both a first-
and a second-moment element, suggesting a more realistic simulation would
analyze these together. This is undertaken in Figure 15, where the output re-
sponse to a pure second-moment shock (from Figure 12) is plotted alongside
the output response to the same second-moment shock with an additional
first-moment shock of −2% to business conditions.37 Adding an additional
first-moment shock leaves the main character of the second-moment shock
unchanged—a large drop and rebound.

Interestingly, a first-moment shock on its own shows the type of slow re-
sponse dynamics that the real data display (see, for example, the response to a

37I choose −2% because this is equivalent to 1 year of business-conditions growth in the model.
Larger or smaller shocks yield a proportionally larger or smaller impact.
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FIGURE 15.—Combined first- and second-moment shocks. The second-moment shock only has
σt set to σH . The first- and second-moment shock has σt set to σH and also a −2% macro busi-
ness-conditions shock. The first-moment shock only just has a −2% macro business-conditions
shock.

monetary shock in Figure 3). This is because the cross-sectional distribution of
units generates a dynamic response to shocks.38

This rapid drop and rebound in response to a second-moment shock is
clearly very different from the persistent drop over several quarters in response
to a more traditional first-moment shock. Thus, to the extent a large shock
is more a second-moment phenomenon—for example, 9/11—the response is
likely to involve a rapid drop and rebound, while to the extent it is more a
first-moment phenomenon—for example, OPEC II—it is likely to generate a
persistent slowdown. However, in the immediate aftermath of these shocks,
distinguishing them will be difficult, as both the first- and second-moment
components will generate an immediate drop in employment, investment, and
productivity. The analysis in Section 2.1 suggests, however, there are empir-
ical proxies for uncertainty that are available in real time to aid policymak-
ers, such as the VXO series for implied volatility (see notes to Figure 1), the
cross-sectional spread of stock-market returns, and the cross-sectional spread
of professional forecasters.

Of course these first- and second-moment shocks differ both in terms of the
moments they impact and in terms of their duration: permanent and tempo-

38See the earlier work on this by, for example, Caballero and Engel (1993) and Bertola and
Caballero (1994).
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rary, respectively. The reason is that the second-moment component of shocks
is almost always temporary while the first-moment component tends to be per-
sistent. For completeness a persistent second-moment shock would generate
a similar effect on investment and employment as a persistent first-moment
shock, but would generate a slowdown in productivity growth through the re-
allocation term rather than a one-time reduction in productivity levels through
the within term. Thus, the temporary/permanent distinction is important for
the predicted time profile of the impact of the shocks on hiring and investment,
and the first-/second-moment distinction is important for the route through
which these shocks impact productivity.

The only historical example of a persistent second-moment shock was
the Great Depression, when uncertainty—as measured by share-returns
volatility—rose to an incredible 130% of 9/11 levels on average for the 4 years
of 1929 to 1932. While this type of event is unsuitable for analysis using my
model given the lack of general equilibrium effects and the range of other fac-
tors at work, the broad predictions do seem to match up with the evidence.
Romer (1990) argued that uncertainty played an important real-options role
in reducing output during the onset of the Great Depression, while Ohanian
(2001) and Bresnahan and Raff (1991) reported “inexplicably” low levels of
productivity growth with an “odd” lack of output reallocation over this period.

5. ESTIMATING THE MODEL PARAMETERS

This section explains how the individual parameter values used to solve the
model and to simulate uncertainty shocks in the previous section were ob-
tained. Readers who are focused on the simulation may want to skip to Sec-
tion 6.

The full set of parameters is the vector θ that characterizes the firm’s rev-
enue function, stochastic processes, adjustment costs, and discount rate. The
econometric problem consists of estimating this parameter vector θ. Since the
model has no analytical closed form solution, this vector cannot be estimated
using standard regression techniques. Instead estimation of the parameters is
achieved by simulated method of moments (SMM), which minimizes a dis-
tance criterion between key moments from actual data (a panel of publicly
traded firms from Compustat) and simulated data. Because SMM is computa-
tionally intensive, only 10 parameters can be estimated; the remaining 13 are
predefined.

5.1. Simulated Method of Moments

SMM proceeds as follows: a set of actual data moments ΨA is selected for
the model to match.39 For an arbitrary value of θ the dynamic program is solved

39See McFadden (1989) and Pakes and Pollard (1989) for the statistical properties of the SMM
estimator.
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and the policy functions are generated. These policy functions are used to cre-
ate a simulated data panel of size (κN�T + 10), where κ is a strictly positive
integer, N is the number of firms in the actual data, and T is the time dimen-
sion of the actual data. The first 10 years are discarded so as to start from
the ergodic distribution. The simulated moments ΨS(θ) are then calculated on
the remaining simulated data panel, along with an associated criterion func-
tion Γ (θ), where Γ (θ) = [ΨA − ΨS(θ)]′W [ΨA − ΨS(θ)], which is a weighted
distance between the simulated moments ΨS(θ) and the actual moments ΨA.

The parameter estimate θ̂ is then derived by searching over the parameter
space to find the parameter vector which minimizes the criterion function:

θ̂ = arg min
θ∈Θ

[ΨA −ΨS(θ)]′W [ΨA −ΨS(θ)]�(5.1)

Given the potential for discontinuities in the model and the discretization of
the state space, I use an annealing algorithm for the parameter search (see
Appendix B). Different initial values of θ are selected to ensure the solution
converges to the global minimum. I also run robustness tests in Section 5.7 with
different initial distributions.

The efficient choice for W is the inverse of the variance–covariance matrix
of [ΨA −ΨS(θ)]. Defining Ω to be the variance–covariance matrix of the data
moments, Lee and Ingram (1991) showed that under the estimating null, the
variance–covariance of the simulated moments is equal to 1

κ
Ω. Since ΨA and

ΨS(θ) are independent by construction, W = [(1+ 1
κ
)Ω]−1, where the first term

in the inner brackets represents the randomness in the actual data and the sec-
ond term represents the randomness in the simulated data. Ω is calculated by
block bootstrap with replacement on the actual data. The asymptotic variance
of the efficient estimator θ̂ is proportional to (1+ 1

κ
). I use κ = 25, with each of

these 25 firm panels having independent draws of macro shocks. This implies
the standard error of θ̂ is increased by 4% by using simulation estimation.

5.2. Predefined Parameters

In principle every parameter could be estimated, but in practice the size of
the estimated parameter space is limited by computational constraints. I there-
fore focus on the parameters about which there are probably the weakest
priors—the six adjustment cost parameters, the wage/hours trade-off slope, the
baseline level of uncertainty, and the two key parameters that determine the
firm-level demand drift, Θ = (PRL�FCL�QCL�PRK�FCK�QCK�γ�σL�π

μ
H�H�

μL). The other 13 parameters are based on values in the data and the litera-
ture, and are displayed in Table II.

The predefined parameters outlined in Table II are mostly self-explanatory,
although a few require further discussion. One of these is ε, which is the elastic-
ity of demand. In a constant returns to scale (CRS) production function setup
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this translates directly into the returns to scale parameter on the revenue func-
tion, a+ b. There is a wide range of estimates of the revenue returns to scale,
recent examples being 0.905 in Khan and Thomas (2003), 0.82 in Bachman,
Caballero, and Engel (2008), and 0.592 in Cooper and Haltiwanger (2006).
I chose a parameter value of ε = 4, which (under CRS) yields a + b =0.75,
which is (i) roughly in the midpoint of this literature and (ii) optimal for the
speed of the numerical simulation since a = 0�25 and b = 0�5 so that capi-
tal and labor have integer fraction exponentials which compute much faster.40

This implies a markup of 33%, which is toward the upper end of the range es-
timates for price–cost markups. I also check the robustness of my results to a
parameter value of a+ b= 0�83 (given by ε= 6 with CRS), which is consistent
with a 20% markup.

The uncertainty process parameters are primarily taken from the macro
volatility process in Figure 1, with the baseline level of uncertainty estimated
in the simulation. The labor attrition rate is chosen at 10% per annum. This
low figure is selected for two reasons: (i) to be conservative in the simulations
of an uncertainty shock, since attrition drives the fall in employment levels,
and (ii) for numerical speed, as this matches the capital depreciation rate, so
that the (L/K) dimension can be ignored if no investment and hiring/firing oc-
cur. I also report a robustness test for using an annualized labor attrition rate
of 20%, which more closely matches the figures for annualized manufacturing
quits in Davis, Faberman, and Haltiwanger (2006).

5.3. Estimation

Under the null, a full-rank set of moments (ΨA) will consistently estimate the
parameter of the adjustment costs (Θ).41 The choice of moments is also impor-
tant for the efficiency of the estimator. This suggests that moments which are
“informative” about the underlying structural parameters should be included.
The basic insights of plant- and firm-level data on labor and capital is the pres-
ence of highly skewed cross-sectional growth rates and rich time-series dynam-
ics, suggesting some combination of cross-sectional and time-series moments.
Two additional issues help to guide the exact choice of moments.

5.3.1. Distinguishing the Driving Process From Adjustment Costs

A key challenge in estimating adjustment costs for factor inputs is dis-
tinguishing between the dynamics of the driving process and factor adjust-

40Integer fractional exponentials are more easily approximated in binary calculations (see Judd
(1998, Chapter 2) for details). This is quantitatively important due to the intensity of exponential
calculations in the simulation, for example, moving from a+ b = 0�75 to a+ b= 0�76 slows down
the simulation by around 15%. Choosing a lower value of a + b also induces more curvature in
the value function so that less grid points are required to map the relevant space.

41Note that even with a full-rank set of moments the parameters are only identified pointwise.
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ment costs. Concentrating on the moments from only one factor—for exam-
ple, capital—makes it very hard to do this. To illustrate this, first consider a
very smooth driving process without adjustment costs, which would produce
a smooth investment series. Alternatively consider a volatile driving process
with convex capital adjustment costs, which would also produce a smooth in-
vestment series. Hence, without some additional moments (or assumptions),
it would be very hard to estimate adjustment costs using just the investment
series data.

So I focus on the joint (cross-sectional and dynamic) moments of the invest-
ment, employment, and sales growth series. The difference in responses across
the three series (investment, employment, and sales growth) identifies the two
sets of adjustment costs (for capital and labor).42

5.3.2. Distinguishing Persistent Differences From Adjustment Costs

A stylized fact from the estimation of firm- and plant-level investment and
labor demand equations is the empirical importance of “fixed effects,” that
is, persistent differences across firms and plants in their levels of investment,
employment, and output growth rates. Without controls for these persistent
differences, the estimates of the adjustment costs could be biased. For exam-
ple, persistent between-firm differences in investment, employment, and sales
growth rates due to different growth rates of demand would (in the absence
of controls for this) lead to the estimation of large quadratic adjustment costs,
which are necessary to induce the required firm-level autocorrelation.

To control for differential firm-level growth rates, the estimator includes
two parameters: the spread of firm-level business-conditions growth, μH −μL,
which determines the degree of firm-level heterogeneity in the average growth
rates of business conditions as defined in (3.3); and the persistence of firm-level
business-conditions growth, πμ

H�H , as defined in (3.6). When μH − μL is large
there will be large differences in the growth rates of labor, capital, and output
across firms, and when πμ

H�H is close to unity these will be highly persistent.43 To
identify these parameters separately from adjustment costs requires informa-
tion on the time path of autocorrelation across the investment, employment,
and sales growth series. For example, persistent correlations between invest-
ment, sales, and employment growth rates going back over many years would
help to identify fixed differences in the growth rates of the driving process,
while decaying correlations in the investment series only would suggest convex
capital adjustment costs.

42An alternative is a two-step estimation process in which the driving process is estimated first
and then the adjustment costs are estimated given this driving process (see, for example, Cooper
and Haltiwanger (2006)).

43Note that with π
μ
H�H = 1 these will be truly fixed effect differences.
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So I include moments for the second-order and fourth-order correlations
of the investment, employment growth, and sales growth series.44 The second-
order autocorrelation is chosen to avoid a negative bias in these moments from
underlying level measurement errors which would arise in a first-order auto-
correlation measure, while the fourth-order autocorrelation is chosen to allow
a sufficiently large additional time period to pass (2 years) to identify the de-
cay in the autocorrelation series. Shorter and longer lags, like the third-order,
fifth-order, and sixth-order autocorrelations could also be used, but in experi-
mentations did not make much difference.45

5.4. Firm-Level Data

There are too little data at the macroeconomic level to provide sufficient
identification for the model. I therefore identify my parameters using a panel
of firm-level data from U.S. Compustat. I select the 20 years of data that cover
1981 to 2000.

The data were cleaned to remove major mergers and acquisitions by drop-
ping the top and bottom 0.5% of employment growth, sales growth, and invest-
ment rates. Firms with an average of at least 500 employees and $10m sales (in
2000 prices) were kept to focus on firms which are more size homogeneous.
This generated a sample of 2548 firms and 22,950 observations with mean (me-
dian) employees of 13,540 (3450) and mean (median) sales of $2247m ($495m)
in 2000 prices. In selecting all Compustat firms I am conflating the parameter
estimates across a range of different industries, and a strong argument can be
made for running this estimation on an industry by industry basis. However,
in the interests of obtaining the “average” parameters for a macro simulation
and to ensure a reasonable sample size, I keep the full panel, leaving industry-
specific estimation to future work.

Capital stocks for firm i in industry m in year t are constructed by the per-
petual inventory method46: labor figures come from company accounts, while
sales figures come from accounts after deflation using the CPI. The invest-
ment rate is calculated as (I/K)i�t = Ii�t/(0�5 ∗ (Ki�t +Ki�t−1)), the employment
growth rate as (�L/L)i�t = (Li�t −Li�t−1)/(0�5 ∗ (Li�t +Li�t−1)), and the sales
growth as (�S/S)i�t = (Si�t − Si�t−1)/(0�5 ∗ (Si�t + Si�t−1)).47

44Note: A kth-order correlation for series xi�t and yi�t is defined as Corr(xit � yit−k).
45Note that because the optimal weighting matrix takes into account the covariance across

moments, adding extra moments that are highly correlated to included moments has very little
impact on the parameters estimates.

46Ki�t = (1 − δK)Ki�t−1(Pm�t/Pm�t−1)+ Ii�t , initialized using the net book value of capital, where
Ii�t is net capital expenditure on plant, property, and equipment, and Pm�t is the industry-level
capital goods deflator from Bartelsman, Becker, and Grey (2000).

47Gross investment rates and net employment growth rates are used since these are directly
observed in the data. Under the null that the model is correctly specified, the choice of net versus
gross is not important for the consistency of parameter estimates as long as the same actual and
simulated moments are matched.
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The simulated data are constructed in exactly the same way as company ac-
counts are built. First, firm value is created by adding up across the N units in
each firm. It is then converted into annual figures using standard accounting
techniques: simulated data for flow figures from the accounting profit & loss
and cash-flow statements (such as sales and capital expenditure) are added up
across the 12 months of the year; simulated data for stock figures from the ac-
counting balance sheet statement (such as capital stock and labor force) are
taken from the year end values.

By constructing my simulation data in the same manner as company accounts
I can estimate adjustment costs using firm-level data sets like Compustat. This
has some advantages versus using census data sets like the Logitudinal Re-
search Dataset (LRD) because firm-level data are (i) easily available to all re-
searchers in a range of different countries; (ii) matched into firm level financial
and cash-flow data; and (iii) available as a yearly panel stretching back several
decades (for example to the 1950s in the United States). Thus, this technique
of explicitly building aggregation into estimators to match against aggregated
quoted firm-level data should have a broader use in other applications. The
obvious disadvantage of using Compustat is it represents only about one-third
of employment in the United States (Davis et al. (2006)).

5.5. Measurement Errors

Employment figures are often poorly measured in company accounts, typi-
cally including all parttime, seasonal, and temporary workers in the total em-
ployment figures without any adjustment for hours, usually after heavy round-
ing. This problem is then made much worse by the differencing to generate
growth rates.

As a first step toward reducing the sensitivity toward these measurement er-
rors, the autocorrelations of growth rates are taken over longer periods (as
noted above). As a second step, I explicitly introduce employment measure-
ment error into the simulated moments to try to mimic the bias these impute
into the actual data moments. To estimate the size of the measurement er-
ror, I assume that firm wages (Wit) can be decomposed into Wit = ηtλj�tφiLit ,
where ηt is the absolute price level, λj�t is the relative industry wage rate, φi

is a firm-specific salary rate (or skill/seniority mix), and Lit is the average an-
nual firm labor force (hours adjusted). I then regress logWit on a full set of
year dummies, a log of the 4-digit SIC industry average wage from Bartelsman,
Becker, and Gray (2000), a full set of firm-specific fixed effects, and logLit .
Under my null on the decomposition of Wit the coefficient on logLit will be ap-
proximately σ2

L/(σ
2
L + σ2

ME), where σ2
L is the variation in log employment and

σ2
ME is the measurement error in log employment. I find a coefficient (standard

error (s.e.)) on logLit of 0.882 (0.007), implying a measurement error of 13%
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in the logged labor force numbers.48 This is reassuringly similar to the 8% esti-
mate for measurement error in Compustat manufacturing firms’ labor figures
that Hall (1987) calculated comparing ordinary least squares and instrumen-
tal variable estimates. I take the average of these figures and incorporate this
into the simulation estimation by multiplying the aggregated annual firm labor
force by mei�t , where mei�t ∼ i�i�d� LN(0�0�105) before calculating simulated
moments.

The other variable which is also potentially affected by measurement error is
the capital stock.49 Actual depreciation rates are not observed, so the perpet-
ual inventory capital stock is potentially mismeasured. To investigate the im-
portance of this in Section 5.7 I reestimate the model assuming capital stocks
also have a 10% log-normal measurement error.

5.6. Baseline Adjustment-Cost Estimates

In this section I present the estimates of the units’ capital and labor adjust-
ment costs. Starting with Table III, the column labelled Data in the bottom
panel reports the actual moments from Compustat. These demonstrate that
investment rates have a low spread but a heavy right skew, due to the lack of
disinvestment, and strong dynamic correlations. Labor growth rates are rela-
tively variable but unskewed, with weaker dynamic correlations. Sales growth
rates have similar moments to those of labor, although slightly lower spread
and higher degree of dynamics correlations.

The column in Table III labelled All presents the results from estimating
the preferred specification, allowing for all types of adjustment costs. The esti-
mated adjustment costs for capital imply a large resale loss of around 34% on
capital, fixed investment costs of 1.5% of annual sales (about 4 working days),
and no quadratic adjustment costs. The estimated labor adjustment costs imply
limited hiring and firing costs of about 1.8% of annual wages (about 5 working
days), and a high fixed cost of around 2.1% of annual revenue (about 6 work-
ing days), with no quadratic adjustment costs. The standard errors suggest all
of these point estimates are statistically significant except for the fixed cost of
capital adjustment (CF

K).
One question is how do these estimates compare to those previously esti-

mated in the literature? Table IV presents a comparison for some other esti-
mates from the literature. Three factors stand out: first, there is tremendous
variation is estimated adjustment costs, reflecting the variety of data, tech-
niques, and assumptions used in the different papers; second, my estimates

48Adding firm- or industry-specific wage trends reduces the coefficient on logWit , implying an
even higher degree of measurement error. Running the reverse regression of log labor on log
wages plus the same controls generates a coefficient (s.e.) of 0.990 (0.008), indicating that the
proportional measurement error in wages (a better recorded financial variable) is many times
smaller than that of employment. The regressions are run using 2468 observations on 219 firms.

49Sales and capital expenditure values are usually easier to audit and so much better measured.



664 NICHOLAS BLOOM

TABLE III

ADJUSTMENT COST ESTIMATES (TOP PANEL)a

Adjustment Costs Specification

Estimated Parameters All Capital Labor Quad None

CP
K : investment resale loss (%) 33�9 42�7

(6�8) (14�2)
CF

K : investment fixed cost (% annual sales) 1�5 1�1
(1�5) (0�2)

CQ
K : capital quadratic adjustment cost (parameter) 0 0�996 4�844

(0�009) (0�044) (454.15)
CP

L: per capita hiring/firing cost (% annual wages) 1�8 16�7
(0�8) (0�1)

CF
L: fixed hiring/firing costs (% annual sales) 2�1 1�1

(0�9) (0�1)
CQ

L : labor quadratic adjustment cost (parameter) 0 1�010 0
(0�037) (0�017) (0�002)

σL: baseline level of uncertainty 0�443 0�413 0�216 0�171 0�100
(0�009) (0�012) (0�005) (0�005) (0�005)

μH −μL: spread of firm business conditions growth 0�121 0�122 0�258 0�082 0�158
(0�002) (0�002) (0�001) (0�001) (0�001)

π
μ
H�L: transition of firm business conditions growth 0 0 0�016 0 0�011

(0�001) (0�001) (0�001) (0�001) (0�001)
γ : curvature of the hours/wages function 2�093 2�221 3�421 2�000 2�013

(0�272) (0�146) (0�052) (0�009) (14�71)

(Continues)

of positive capital and labor adjustment costs appear broadly consistent with
other papers which jointly estimate these; and third, studies which estimate
nonconvex adjustment costs report positive and typically very substantial val-
ues.

For interpretation, in Table III I also display results for four illustrative re-
stricted models. First, a model with capital adjustment costs only, assuming
labor is fully flexible, as is typical in the investment literature. In the Capital
columns we see that the fit of the model is worse, as shown by the significant
rise in the criterion function from 404 to 625.50 This reduction in fit is primarily
due to the worse fit of the labor moments, suggesting ignoring labor adjustment
costs is a reasonable approximation for modelling investment. Second, a model
with labor adjustment costs only—as is typical in the dynamic labor demand
literature—is estimated in the column Labor: the fit is substantially worse. This
suggests that ignoring capital adjustment costs is problematic. Third, a model

50The χ2 value for 3 degrees of freedom is 7.82, so the column Capital can easily be rejected
against the null of All given the difference in criterion values of 221. It is also true, however, that
the preferred All specification can also be rejected as the true representation of the data given
that the χ2 value for 10 degrees of freedom is 18.31.
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TABLE III

(BOTTOM PANEL)

Moments Data Data Moments − Simulated Moments

Correlation (I/K)i�t with (I/K)i�t−2 0.328 0�060 −0�015 0�049 −0�043 0�148
Correlation (I/K)i�t with (I/K)i�t−4 0.258 0�037 0�004 0�088 0�031 0�162
Correlation (I/K)i�t with (�L/L)i�t−2 0.208 0�003 −0�025 0�004 −0�056 0�078
Correlation (I/K)i�t with (�L/L)i�t−4 0.158 −0�015 −0�009 0�036 0�008 0�091
Correlation (I/K)i�t with (�S/S)i�t−2 0.260 −0�023 −0�062 −0�044 −0�102 0�024
Correlation (I/K)i�t with (�S/S)i�t−4 0.201 −0�010 −0�024 0�018 −0�036 0�087
Standard deviation (I/K)i�t 0.139 −0�010 0�010 −0�012 0�038 0�006
Coefficient of skewness (I/K)i�t 1.789 0�004 0�092 1�195 1�311 1�916
Correlation (�L/L)i�t with (I/K)i�t−2 0.188 −0�007 0�052 −0�075 0�055 0�053
Correlation (�L/L)i�t with (I/K)i�t−4 0.133 −0�021 0�024 −0�061 0�038 0�062
Correlation (�L/L)i�t with (�L/L)i�t−2 0.160 0�011 0�083 −0�033 0�071 0�068
Correlation (�L/L)i�t with (�L/L)i�t−4 0.108 −0�013 0�054 −0�026 0�045 0�060
Correlation (�L/L)i�t with (�S/S)i�t−2 0.193 −0�019 0�063 −0�091 0�064 0�023
Correlation (�L/L)i�t with (�S/S)i�t−4 0.152 0�003 0�056 −0�051 0�059 0�063
Standard deviation (�L/L)i�t 0.189 −0�022 −0�039 0�001 −0�001 0�005
Coefficient of skewness (�L/L)i�t 0.445 −0�136 0�294 −0�013 0�395 0�470
Correlation (�S/S)i�t with (I/K)i�t−2 0.203 −0�016 −0�015 −0�164 −0�063 −0�068
Correlation (�S/S)i�t with (I/K)i�t−4 0.142 −0�008 −0�010 −0�081 −0�030 −0�027
Correlation (�S/S)i�t with (�L/L)i�t−2 0.161 −0�005 0�032 −0�105 −0�024 −0�037
Correlation (�S/S)i�t with (�L/L)i�t−4 0.103 −0�015 0�011 −0�054 −0�005 −0�020
Correlation (�S/S)i�t with (�S/S)i�t−2 0.207 −0�033 0�002 −0�188 −0�040 −0�158
Correlation (�S/S)i�t with (�S/S)i�t−4 0.156 0�002 0�032 −0�071 −0�021 −0�027
Standard deviation (�S/S)i�t 0.165 0�004 0�003 0�033 0�051 0�062
Coefficient of skewness (�S/S)i�t 0.342 −0�407 −0�075 −0�365 0�178 0�370

Criterion, Γ (θ) 404 625 3618 2798 6922

aThe Data column (bottom panel only) contains the moments from 22,950 observations on investment (I), capital
(K), labor (L) and sales (S) for 2548 firms. The other columns contain the adjustment costs estimates (top panel) and
data moments minus the simulated moments (bottom panel) for all adjustment costs (All), just capital adjustment
costs (Capital), just labor adjustment costs (Labor), just quadratic adjustment costs with 1 unit per firm (Quad), and
no adjustment costs (None). So, for example, the number 0.328 at the top of the Data column reports that the second-
lag of the autocorrelation of investment in the data is 0.328, and the number 0.060 to the right reports that in the All
specification the simulated moment is 0.060 less than the data moment (so is 0.268 in total). In the top panel standard-
errors are given in italics in parentheses below the point estimates. Parameters were estimated using simulated method
of moments, and standard were errors calculated using numerical derivatives.

with quadratic costs only and no cross-sectional aggregation—as is typical in
convex adjustment-costs models—is estimated in the Quad column, leading to
a moderate reduction in fit generated by excessive intertemporal correlation
and an inadequate investment skew. Interestingly, industry and aggregate data
are much more autocorrelated and less skewed due to extensive aggregation,
suggesting quadratic adjustments costs could be a reasonable approximation
at this level. Finally, a model with no adjustment costs is estimated in column
None. Omitting adjustment costs clearly reduces the model fit. It also biases
the estimation of the business-conditions process to have much larger firm-
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TABLE IV

A COMPARISON WITH OTHER CAPITAL AND LABOR ADJUSTMENT-COST ESTIMATES

Capital Labor

Source PI (%) Fixed (%) Quad PI (%) Fixed (%) Quad

Column All in Table III (this paper) 33�9 1�5 0 1.8 2.1 0
Ramey and Shapiro (2001) 40–80
Caballero and Engel (1999) 16�5
Hayashi (1982) 20
Cooper and Haltiwanger (2006) 2�5 20�4 0�049
Shapiro (1986) 3 1�33
Merz and Yashiv (2007) 14�2 4�2
Hall (2004) 0 0
Nickell (1986) 8–25
Cooper, Haltiwanger, and Willis (2004) 1.7 0

aPI denotes partial irreversibilities, Fixed denotes fixed costs, and Quad denotes quadratic adjustment costs. Miss-
ing values indicate no parameter estimated in the main specification. Zeros indicate the parameter was not significantly
different from zero. Nickell’s (1986) lower [higher] value is for unskilled [skilled] workers. Shapiro’s (1986) value is
a weighted average of (2/3)× 0 for production workers and (1/3)× 4 for nonproduction workers. Merz and Yashiv’s
(2007) values are the approximated quadratic adjustment costs at the sample mean. Comparability subject to variation
in data sample, estimation technique, and maintained assumptions.

level growth fixed effects and lower variance of the idiosyncratic shocks. This
helps to highlight the importance of jointly estimating adjustment costs and the
driving process.

In Table III there are also some estimates of the driving process parameters
σL, μH − μL, and πμ

H�H , as well as the wage–hours curve parameter γ. What
is clear is that changes in the adjustment-cost parameters leads to changes
in these parameters. For example, the lack of adjustment costs in the col-
umn Quad generates an estimated uncertainty parameter of around one-third
of the baseline All value and a spread in firm-level fixed costs of about two-
thirds of the baseline All value. This provides support for the selection of mo-
ments that can separately identify the driving process and adjustment-cost pa-
rameters.

5.7. Robustness Tests on Adjustment-Cost Estimates

In Table V I run some robustness tests on the modelling assumptions. The
column All repeats the baseline results from Table III for ease of comparison.

The column δL = 0�2 reports the results from reestimating the model with
a 20% (rather than 10%) annual attrition rate for labor. This higher rate of
attrition leads to higher estimates of quadratic adjustment costs for labor and
capital, and lower fixed costs for labor. This is because with higher labor attri-
tion rates, hiring and firing become more sensitive to current demand shocks
(since higher attrition reduces the sensitivity to past shocks). To compensate,
the estimated quadratic adjustment-cost estimates are higher and fixed costs
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TABLE V

ADJUSTMENT COST ROBUSTNESS TESTSa

Adjustment Costs Specification

Estimated Parameters All δL = 20% a+ b = 0�83 N = 25 N = 1 Pre −5% Pre +5% Cap ME Yearly Weekly

CP
K : investment resale loss (%) 33�9 28�6 29�8 30�3 47�0 33�9 36�1 35�3 45�3 50�0

(6�8) (4�8) (4�8) (8�7) (9�1) (6�8) (4�9) (5�1) (5�2) (30�8)
CF
K : investment fixed cost (% annual sales) 1�5 2�1 2�1 0�9 1�3 1�5 1�6 0�9 2�1 1�6

(1�0) (0�9) (0�5) (0�4) (0�2) (1�0) (0�5) (0�4) (0�3) (0�4)
CQ
K : capital quadratic adjustment cost 0 0�461 0 0�616 2�056 0 0�058 0�525 0�025 1�488

(0�009) (0�054) (0�007) (0�154) (0�284) (0�009) (0�037) (0�078) (0�015) (0�729)
CP
L: per capita hiring/firing cost (% wages) 1�8 1�0 0 0 0 1�8 0 0 2�0 0

(0�8) (0�1) (0�0) (0�1) (0�1) (0�8) (0�04) (0�7) (0�9) (6�1)
CF
L: fixed hiring/firing costs (% sales) 2�1 0�3 1�7 1�3 0 2�1 1�6 0�9 2�0 1�3

(0�9) (0�1) (0�6) (0�8) (0�0) (0�9) (0�7) (0�4) (0�5) (0�3)
CQ
L : labor quadratic adjustment cost 0 0�360 0 0�199 0�070 0 0 0 1�039 0�808

(0�037) (0�087) (0�021) (0�062) (0�031) (0�037) (0�018) (0�017) (0�165) (0�612)
σL: baseline level of uncertainty 0�443 0�490 0�498 0�393 0�248 0�443 0�469 0�515 0�339 0�600

(0�009) (0�019) (0�012) (0�013) (0�008) (0�009) (0�011) (0�017) (0�011) (0�035)
μH −μL: spread of business conditions growth 0�121 0�137 0�123 0�163 0�126 0�121 0�132 0�152 0�228 0

(0�002) (0�002) (0�001) (0�002) (0�002) (0�002) (0�002) (0�003) (0�005) (0�018)
π
μ
H�L: transition business conditions growth 0 0 0 0 0 0 0 0 0�016 n/a

(0�001) (0�001) (0�001) (0�001) (0�001) (0�001) (0�001) (0�001) (0�001) n/a
γ: curvature of hours/wages function 2�093 2�129 2�000 2�148 2�108 2�093 2�056 2�000 2�000 2�129

(0�272) (0�222) (0�353) (0�266) (0�147) (0�272) (0�246) (0�211) (0�166) (0�254)

Criterion, Γ (θ) 404 496 379 556 593 403 380 394 656 52
aAdjustment costs estimates using the same methodology as in Table III for the baseline model (All), except 20% annualized labor attrition (δL = 20%), 20% markup

(a + b = 0�83), only 25 units per firm (N = 25), only 1 unit per firm (N = 1), a 5% negative business-conditions shock 6 months prior to the start of the simulation period
(pre −5%), a 5% positive business-conditions shock 6 months prior to the simulation period (pre +5%), a 10% log-normal capital measurement error (cap ME), and simulation
run at a yearly frequency (Yearly). The final column (Weekly) is different. This evaluates temporal aggregation bias. It reports parameters estimated using moments from simulated
data created by taking the parameters values from the All column, simulating at a weekly frequency, and then aggregating up to yearly data. This is done to test the bias from
estimating the model assuming an underlying monthly process when in fact the moments are generated from an underlying weekly process. Standard errors are given in Italics
below the point estimates.
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are lower. The column a+ b = 0�83 reports the results for a specification with
a 20% markup, in which the estimated adjustment costs look very similar to
the baseline results.

In columns N = 25 and N = 1, the results are reported for simulations as-
suming the firm operates 25 units and 1 unit, respectively.51 These assumptions
also lead to higher estimates for the quadratic adjustment costs and lower esti-
mates for the nonconvex adjustment costs to compensate for the reduction in
smoothing by aggregation.

In columns Pre −5% and Pre +5%, the results are reported for simulations
assuming there is a −5% and +5% shock, respectively, to business conditions
in the 6 months before the simulation begins. This simulates running the simu-
lation during a recession and boom, respectively, to investigate how the initial
conditions influence the results. As shown in Table V the results are numeri-
cally identical for Pre −5% and similar for Pre +5% to those for All, suggesting
the results are robust to different initial conditions. The reason is that the long
time period of the simulation (20 years) and the limited persistence of macro
shocks means that the impact of initial conditions dies quickly.

In column Cap ME, the parameters are estimated including a log-normal
10% measurement error for capital, with broadly similar results. Finally, the
last two columns investigate the impact of time aggregation. First, the column
Yearly reports the results for running the simulation at a yearly frequency with-
out any time aggregation. Dropping time aggregation leads to higher estimated
quadratic adjustment costs to compensate for the loss of smoothing by aggrega-
tion. Second, the column Weekly reports the results from (i) taking the baseline
All parameter estimates and using them to run a weekly frequency simulation,
(ii) aggregating these data to a yearly frequency, and (iii) using this to estimate
the model assuming a monthly underlying frequency. Thus, this seeks to under-
stand the bias from assuming the model is monthly if the underlying generating
process was in fact weekly. Comparing the All parameter values used to gen-
erate the data with the Weekly values estimated from (incorrectly) assuming a
monthly underlying frequency reveals a number of differences. This highlights
that modelling time aggregation correctly appears to matter for correctly esti-
mating adjustment costs. Given the lack of prior empirical or simulation results
on temporal aggregation, this suggests an area in which further research would
be particularly valuable.

6. SIMULATION ROBUSTNESS

In this section, I undertake a set of simulation robustness tests for different
values of adjustment costs, the predetermined parameters, and the uncertainty
process.

51The specification with N = 1 is included to provide guidance on the impact of simulated
aggregation rather than for empirical realism. The evidence from the annual reports of almost all
large companies suggests aggregation is pervasive.
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6.1. Adjustment Costs

To evaluate the effects of different types of adjustment, I ran three simu-
lations: the first with fixed costs only, the second with partial irreversibilities
only, and the third with quadratic adjustment costs only.52 The output from
these three simulations is shown in Figure 16. As can be seen, the two specifi-
cations with nonconvex adjustment costs generate a distinct drop and rebound
in economic activity. The rebound with fixed costs is faster than with partial
irreversibilities because of the bunching in hiring and investment, but other-
wise they are remarkably similar in size, duration, and profile. The quadratic
adjustment-cost specification appears to generate no response to an uncer-
tainty shock. The reason is that there is no kink in adjustment costs around
zero, so there is no option value associated with doing nothing.

In summary, this suggests the predictions are very sensitive to the inclusion
of some degree of nonconvex adjustment costs, but are much less sensitive to
the type (or indeed level) of these nonconvex adjustment costs. This highlights

FIGURE 16.—Different adjustment costs. Adjustment costs in the fixed costs specification have
only the CF

K and CF
L adjustment costs from the All estimation in Table III the partial irreversibility

has only the CP
K and CP

L from the baseline All estimation in Table III, and the quadratic has the
adjustment costs from the Quad column in Table III.

52For fixed costs and partial irreversibilities the adjustment costs are the fixed cost and partial
irreversibility components of the parameter values from the All column in Table III. For quadratic
adjustment costs, the values are from the Quad column in Table III.
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the importance of the prior step of estimating the size and nature of the un-
derlying labor and capital adjustment costs.

6.2. Predefined Parameters

To investigate the robustness of the simulation results to the assumptions
over the predefined parameters, I reran the simulations using the different
parameters from Table V. The results, shown in Figure 17, highlight that the
qualitative result of a drop and rebound in activity is robust to the different as-
sumptions over the predetermined parameters. This is because of the presence
of some nonconvex component in all the sets of estimated adjustment costs in
Table V.

The size of this drop and rebound did vary across specifications, however.
Running the simulation with the N = 1 parameter estimates from Table V
leads to a drop of only 1%, about half the baseline drop of about 1.8%. This
smaller drop was due to the very high levels of estimated quadratic adjustment
costs that were required to smooth the investment and employment series in
the absence of cross-sectional aggregation. Of course, the assumption of no
cross-sectional aggregation (N = 1) is inconsistent with the pervasive aggrega-
tion in the typical large firm. This simulation is presented simply to highlight
the importance of building aggregation into estimation routines when it is also
present in the data.

FIGURE 17.—Simulation robustness to different parameter assumptions.
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In the δL = 0�2 specification the drop was around 2.25%, about 30% above
the baseline drop, due to the greater labor attrition after the shock. Hence,
this more realistic assumption on 20% annual labor attrition (rather than 10%
in the baseline) generates a larger drop and rebound in activity. The results
for assuming partial cross-sectional aggregation (N = 25), a 20% markup (a+
b = 0�83), a preestimation boom (Pre +5%), and capital measurement errors
(Cap ME) are all pretty similar to the baseline simulation (which has full cross-
sectional aggregation and a 33% markup).

6.3. Durations and Sizes of Uncertainty Shocks

Finally, I also evaluate the effects of robustness of the simulation predictions
to different durations and sizes of uncertainty shocks. In Figure 18, I plot the
output response to a shorter-lived shock (a 1-month half-life) and a longer-
lived shock (a 6-month half-life). Also plotted is the baseline (a 2-month half-
life). It is clear that longer-lived shocks generate larger and more persistent
falls in output. The reason is that the pause in hiring and investment lasts for
longer if the rise in uncertainty is more persistent. Of course, because the rise
in uncertainty is more persistent, the cumulative increase in volatility is also
larger so that the medium-term “volatility overshoot” is also greater. Hence,
more persistent uncertainty shocks generate a larger and more persistent drop,
rebound, and overshoot in activity. This is interesting in the context of the
Great Depression, a period in which uncertainty rose to 260% of the baseline

FIGURE 18.—Uncertainty shocks with half-lives (HL) of 1 month, 2 months, and 6 months.
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FIGURE 19.—Different sizes of uncertainty shocks. The larger and smaller uncertainty shocks
have values of σH equal to 150% and 300% of the σL level (baseline is 200%).

level for over 4 years, which in my (partial equilibrium) model would generate
an extremely large and persistent drop in output and employment.

In Figure 19, I plot the output response to a smaller uncertainty shock
(σH = 1�5 × σL), a larger uncertainty shock (σH = 3 × σL), and the baseline
uncertainty shock (σH = 2 × σL). Surprisingly, the three different sizes of un-
certainty shock lead to similar sized drops in activity. The reason is that real-
option values are increasing, but concave, in the level of uncertainty,53 so the
impact of a 50% rise in uncertainty on the hiring and investment thresholds is
about two-thirds of the size of the baseline 100% rise in uncertainty. Since the
baseline impact on the hiring and investment thresholds is so large, even two-
thirds of this pauses almost all hiring and investment. What is different across
the different sizes of shocks, however, is that larger uncertainty shocks gener-
ate a larger medium-term volatility overshoot because the cumulative increase
in volatility is greater.

Finally, in Figure 20, I evaluate the effects of an uncertainty shock which
only changes the variance of macro shocks, and not the variance of firm- or
unit-level shocks. This changes two things in the simulation. First, overall un-
certainty only rises by 33% after a shock, since while macro uncertainty dou-
bles, firm and micro uncertainty are unchanged. Despite this the initial drop is
similar to the baseline simulation for a 100% increase in overall uncertainty.

53See Dixit (1993) and Abel and Eberly (1996) for an analytical derivation and discussion.
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FIGURE 20.—Macro uncertainty shock only. At month 0 the simulation plot Macro uncertainty
shock only has macro shocks only set to σH at month 0. Firm and unit level shocks are σL at all
times.

This confirms the results from Figure 19 that even moderately sized uncer-
tainty shocks are sufficient to pause activity. Second, there is no cross-sectional
increase in firm- and unit-level variance, substantially reducing the volatility
overshoot.54

7. CONCLUSIONS

Uncertainty appears to dramatically increase after major economic and po-
litical shocks like the Cuban missile crisis, the assassination of JFK, the OPEC I
oil-price shock, and the 9/11 terrorist attacks. If firms have nonconvex adjust-
ment costs, these uncertainty shocks will generate powerful real-option effects,
driving the dynamics of investment and hiring behavior. These shocks appear
to have large real effects: the uncertainty component alone generates a 1%
drop and rebound in employment and output over the following 6 months, and
a milder long-run overshoot.

This paper offers a structural framework to analyze these types of uncer-
tainty shocks, building a model with a time-varying second moment of the

54There is still some volatility overshoot due to the averaging across macro shocks in the
25,000 macro draws. The reason for this is that the cross-sectional distribution is right-skewed
on average (as shown in Figure 6) so that investment responds more to positive than negative
macro shocks.
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driving process, and a mix of labor and capital adjustment costs. The model
is numerically solved and estimated on firm-level data using simulated method
of moments. The parameterized model is then used to simulate a large macro
uncertainty shock, which produces a rapid drop and rebound in output, em-
ployment, and productivity growth. This is due to the effect of higher uncer-
tainty making firms temporarily pause their hiring and investment behavior. In
the medium term, the increased volatility arising from the uncertainty shock
generates a volatility overshoot as firms respond to the increased variance of
productivity shocks, which drives a medium-term overshoot and longer-run re-
turn to trend. Hence, the simulated response to uncertainty shocks generates
a drop, rebound, and longer-run overshoot, much the same as their actual em-
pirical impact.

This temporary impact of a second-moment shock is different from the typ-
ically persistent impact of a first moment shock. While the second-moment
effect has its biggest drop by month 3 and has rebounded by about month 6,
persistent first-moment shocks generate falls in activity that last several quar-
ters. Thus, for a policymaker in the immediate aftermath of a shock it is critical
to distinguish the relative contributions of the first- and second-moment com-
ponents of shocks for predicting the future evolution of output.

The uncertainty shock also induces a strong insensitivity to other economic
stimuli. At high levels of uncertainty the real-option value of inaction is very
large, which makes firms extremely cautious. As a result, the effects of empiri-
cally realistic general equilibrium type interest rate, wage, and price falls have
a very limited short-run effect on reducing the drop and rebound in activity.
This raises a second policy implication, that in the immediate aftermath of an
uncertainty shock, monetary or fiscal policy is likely to be particularly ineffec-
tive.

This framework also enables a range of future research. Looking at individ-
ual events it could be used, for example, to analyze the uncertainty impact of
major deregulations, tax changes, trade reforms, or political elections. It also
suggests there is a trade-off between policy correctness and decisiveness—it
may be better to act decisively (but occasionally incorrectly) than to deliberate
on policy, generating policy-induced uncertainty.

More generally these second-moment effects contribute to the “where are
the negative productivity shocks?” debate in the business cycle literature. It
appears that second-moment shocks can generate short sharp drops and re-
bounds in output, employment, investment, and productivity growth without
the need for a first-moment productivity shock. Thus, recessions could po-
tentially be driven by increases in uncertainty. Encouragingly, recessions do
indeed appear in periods of significantly higher uncertainty, suggesting an un-
certainty approach to modelling business cycles (see Bloom, Floetotto, and
Jaimovich (2007)). Taking a longer-run perspective, this model also links to
the volatility and growth literature given the evidence for the primary role of
reallocation in productivity growth.
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The paper also jointly estimates nonconvex and convex labor and capital
adjustment costs. I find substantial fixed costs of hiring/firing and investment,
a large loss from capital resale, and some moderate per-worker hiring/firing
costs. I find no evidence for quadratic investment or hiring/firing adjustment
costs. I also find that assuming capital adjustment costs only—as is standard in
the investment literature—generates an acceptable overall fit, while assuming
labor adjustment costs only—as is standard in the labor demand literature—
produces a poor fit.

APPENDIX A: DATA

All data and Stata do files used to create the empirical Figures 1, 2, and 3 and
Table I are available at http://www.stanford.edu/~nbloom/. In this appendix
I describe the contents and construction of these data sets.

A.1. Stock-Market Volatility Data

A.1.1. Testing for Jumps in Stock-Market Volatility

To test for jumps in stock-market volatility, I use the nonparametric
bipower variation test of Barndorff-Nielsen and Shephard (2006). The test
works for a time series {xt , t = 1�2� � � � �N} by comparing the squared vari-
ation, SV = ∑N

t=3(xt − xt−1)
2 with the bipower variation, BPV = ∑N

t=3(xt −
xt−1)(xt−1 − xt−2). In the limit as dt → 0, if there are no jumps in the data,
then E[SV] → E[BPV] since the variation is driven by a continuous process. If
there are jumps, however, then E[SV] > E[BPV] since jumps have a squared
impact on SV but only a linear impact on BPV. Barndorff-Nielsen and Shep-
hard (2006) suggested two different test statistics—the linear-jump and the
ratio-jump test—which have the same asymptotic distribution but different
finite-sample properties. Using the monthly data from Figure 1, I reject the
null of no jumps at the 2.2% and 1.6% level using the linear and ratio tests,
respectively. Using the daily VXO data underlying Figure 1 (available from
January 1986 onward), I reject the null of no jumps using both tests at the
0.0% level.

A.1.2. Defining Stock-Market Volatility Shocks

Given the evidence for the existence of stock-market volatility jumps, I need
to define what they are. The main measure is an indicator that takes a value
of 1 for each of the 17 events labelled in Figure 1, and 0 otherwise. These
17 events are chosen as those with stock-market volatility more than 1.65 stan-
dard deviations above the Hodrick–Prescott detrended (λ= 129�600) mean of
the stock-market volatility series (the raw undetrended series is plotted in Fig-
ure 1). While some of these shocks occur in 1 month only, others span multiple
months so there was a choice over the exact allocation of their timing. I tried

http://www.stanford.edu/~nbloom/
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TABLE A.1

MAJOR STOCK-MARKET VOLATILITY SHOCKS

Event Max Volatility First Volatility Type

Cuban missile crisis October 1962 October 1962 Terror
Assassination of JFK November 1963 November 1963 Terror
Vietnam buildup August 1966 August 1966 War
Cambodia and Kent State May 1970 May 1970 War
OPEC I, Arab–Israeli War December 1973 December 1973 Oil
Franklin National October 1974 September 1974 Economic
OPEC II November 1978 November 1978 Oil
Afghanistan, Iran hostages March 1980 March 1980 War
Monetary cycle turning point October 1982 August 1982 Economic
Black Monday November 1987 October 1987 Economic
Gulf War I October 1990 September 1990 War
Asian Crisis November 1997 November 1997 Economic
Russian, LTCM default September 1998 September 1998 Economic
9/11 terrorist attack September 2001 September 2001 Terror
Worldcom and Enron September 2002 July 2002 Economic
Gulf War II February 2003 February 2003 War
Credit crunch October 2008 August 2007 Economic

two different approaches: the primary approach is to allocate each event to the
month with the largest volatility spike for that event; an alternative approach
is to allocate each event to the first month in which volatility went more than
2 standard deviations above the HP detrended mean. The events can also be
categorized in terms of terror, war, oil, or economic shocks. So a third volatility
indicator uses only the arguably most exogenous terms of terror, war, and oil
shocks.

The volatility shock events, their dates under each timing scheme, and their
classification are shown in Table A.1. It is noticeable from Table A.1 that al-
most all the shocks are bad events. So one question for empirical identifica-
tion is how distinct are stock-market volatility shocks from stock-market levels
shocks? Fortunately, it turns out that these series do move reasonably inde-
pendently because some events—like the Cuban missile crisis—raise volatility
without impacting stock-market levels, while others—like hurricane Katrina—
generate falls in the stock market without raising volatility. So, for example, the
log detrended stock-market level has a correlation of −0�192 with the main 1/0
volatility shock indicator, a correlation of −0�136 with the 1/0 oil, terror, and
war shock indicator, and a −0�340 correlation with the log detrended volatil-
ity index itself. Thus, the impact of stock-market volatility can be separately
identified from stock-market levels. In the working paper version of this paper
(Bloom (2008)), I briefly described each of the 17 volatility shocks shown on
Figure 1 to highlight the fact that these are typically linked to real shocks.
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A.2. Cross-Sectional Uncertainty Measures

There are four key cross-sectional uncertainty measures:
Standard Deviation of Firm-Level Profits Growth: This is measured on a quar-

terly basis using Compustat quarterly accounts. It is the cross-sectional stan-
dard deviation of the growth rates of pretax profits (data item 23). Profit growth
has a close fit to productivity and demand growth in homogeneous revenue
functions, and is one of the few variables to have been continuously reported
in quarterly accounts since the 1960s. This is normalized by the firms’ aver-
age sales (data item 2) and is defined as (profitst − profitst−1)/(0�5 × salest +
0�5 × salest−1). Only firms with 150 or more quarters of accounts with sales
and pretax profit figures are used to minimize the effects of sample composi-
tion changes.55 The growth rates are windsorized at the top and bottom 0.05%
growth rates to prevent the series from being driven by extreme outliers.

Standard Deviation of Firm-Level Stock Returns: This is measured on a
monthly basis using the CRSP data file. It is the cross-sectional standard de-
viation of the monthly stock returns. The sample is all firms with 500 or more
months of stock-returns data. The returns are windsorized at the top and bot-
tom 0.5% growth rates to prevent the series from being driven by extreme
outliers.

Standard Deviation of Industry-Level TFP Growth: This is measured on an an-
nual basis using the NBER industry data base (Bartelsman, Becker, and Gray
(2000)). The cross-sectional spread is defined as the standard deviation of the
five-factor TFP growth rates, taken across all SIC 4-digit manufacturing indus-
tries. The complete sample is a balanced panel for 422 of the 425 industries
(results are robust to dropping these three industries).

Standard Deviation of GDP Forecasts. This is measured on a half-yearly basis
using the Philadelphia Federal Reserve Bank’s Livingstone survey of profes-
sional forecasters. It is defined as the cross-sectional standard deviation of the
1-year-ahead GDP forecasts normalized by the mean of the 1-year-ahead GDP
forecasts. Only half-years with 50+ forecasts are used to ensure sufficient sam-
ple size for the calculations. This series is linearly detrended across the sample
(1950–2006) to remove a long-run downward drift of forecaster variance.

A.3. VAR Data

The VAR estimations are run using monthly data from June 1962 through
June 2008. The full set of VAR variables in the estimation are log industrial
production in manufacturing (Federal Reserve Board of Governors, season-
ally adjusted), employment in manufacturing (BLS, seasonally adjusted), av-
erage hours in manufacturing (BLS, seasonally adjusted), log consumer price

55Limiting compositional change helps to address some of the issues raised by Davis, Faber-
man, and Haltiwanger (2006), who found rising sales volatility of publicly quoted firms but flat
volatility of privately held firms. I also include a time trend in column 2 of Table I to directly
control for this and focus on short-run movements.
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FIGURE A1.—VAR robustness to different shock definitions.

index (all urban consumers, seasonally adjusted), log average hourly earnings
for production workers (manufacturing), Federal Funds rate (effective rate,
Federal Reserve Board of Governors), a monthly stock-market volatility indi-
cator (described below), and the log of the S&P500 stock-market index. All
variables are HP detrended using a filter value of λ= 129�600.

In Figure A1, the industrial production impulse response function is shown
for four different measures of volatility: the actual series in Figure 1 after HP
detrending (square symbols), the 1/0 volatility indicator with the shocks scaled
by the HP detrended series (dot symbols), an alternative volatility indicator
which dates shocks by their first month (rather than their highest month) (tri-
angle symbols), and a series which only uses the shocks linked to terror, war,
and oil (plus symbols). As can be seen, each one of these shock measures gen-
erates a rapid drop and rebound in the predicted industrial production. In Fig-
ure A2, the VAR results are also shown to be robust to a variety of alternative
variable sets and orderings. The VAR is reestimated using a simple trivariate
VAR (the volatility indicator, log employment, and industrial production only)
(square symbols) also displays a drop and rebound. The “quadvariate” VAR
(the volatility indicator, log stock-market levels, log employment, and indus-
trial production) also displays a similar drop and rebound (cross symbols), as
does the quadvariate VAR with the variable ordering reversed (circular sym-
bols). Hence the response of industrial production to a volatility shock ap-
pears robust to both the basic selection and the ordering of variables. In Fig-
ure A3, I plot the results using different HP detrending filter values: the lin-
ear detrended series (λ = ∞) is plotted (square symbols) alongside the base-
line detrending (λ = 129�600) (cross symbols) and the “flexible” detrending
(λ= 1296). As can be seen, the results again appear robust. I also conducted a
range of other experiments, such as adding controls for the oil price (spot price
of West Texas), and found the results to be similar.
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FIGURE A2.—VAR robustness to different variable sets and ordering.

APPENDIX B: NUMERICAL SOLUTION METHOD

This appendix describes some of the key steps in the numerical techniques
used to solve the firm’s maximization problem. The full program, which runs
on Matlab 64-bit, is at http://www.stanford.edu/~nbloom/.

B.1. Value Function Iteration

The objective is to solve the value function (3.7). This value function solu-
tion procedure is used in two parts of the paper. The first is in the simulated
method of moments estimation of the unknown adjustment cost parameters,

FIGURE A3.—VAR robustness to different variable detrending assumptions.

http://www.stanford.edu/~nbloom/
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whereby the value function is repeatedly solved for a variety of different para-
meters, the data are simulated, and these moments are used in the parameter
search algorithm. The second is in the simulation where the value function is
solved just once—using the estimated parameters choices—and then used to
simulate a panel of 1000 units, repeated 25,000 times. The numerical contrac-
tion mapping procedure used to solve the value function in both cases is the
same. This proceeds following three steps:

STEP 1: Choose a grid of points in (a� l�σ�μ) space. Given the log-linear
structure of the demand process, I use a grid of points in (log(a)� log(l)�σ�μ)
space. In the log(a) and log(l) dimensions this is equidistantly spaced; in
the σ and μ spacing this is determined by the estimated parameters. The
normalization by capital in a and l—noting that a = A/K and l = L/K—
also requires that the grid spacing in the log(a) and log(l) dimensions be
the same (i.e., ai+1/ai = lj+1/lj , where i� j = 1�2� � � � �N index grid points) so
that the set of investment rates {ai/a1� ai/a2� � � � � ai/aN} maintains the state
space on the grid.56 This equivalency between the grid spaces in the log(a)
and log(l) dimensions means that the solution is substantially simplified if the
values of δK and δL are equal, so that depreciation leaves the log(l) dimen-
sion unchanged. When δK and δL are unequal, the difference between them
needs to be an integer of the grid spacing. For the log(a) dimension depreci-
ation is added to the drift in the stochastic process, so there is no constraint
on δK . Given the conversion to logs, I need to apply the standard Jensen cor-
rection to the driving process (3.2), (3.3), and (3.4); for example, for (3.2),
log(AM

t )= log(AM
t−1)− (σ2

t−1 −σ2
L)/2 +σt−1W

M
t . The uncertainty effect on the

drift rate is second order compared to the real-options effect, so the simula-
tions are virtually unchanged if this correction is omitted.

I used a grid of 40,000 points (100 × 100 × 2 × 2). I also experimented with
finer and coarser partitions and found that there were some changes in the
value functions and policy choices as the partition changed, but the character-
istics of the solution (i.e., a threshold response space as depicted in Figure 3)
were unchanged as long as about 60 or more grid points were used in the log(a)
and log(l) dimensions. Hence, the qualitative nature of the simulation results
was robust to moderate changes in the number of points in the state space
partition.

STEP 2: Define the value function on the grid of points. This is straightfor-
ward for most of the grid, but toward the edge of the grid, due to the random-
walk nature of the demand process, this requires taking expectations of the
value function off the edge of the state space. To address this, an extrapola-
tion procedure is used to approximate the value function off the edge of the

56Note that some extreme choices of the investment rate will move the state off the l grid which
induces an offsetting choice of employment growth rates e to ensure this does not occur.



THE IMPACT OF UNCERTAINTY SHOCKS 681

state space. Under partial irreversibilities and/or fixed costs, the value function
is log-linear outside the zone of inaction, so that as long as the state space is
defined to include the region of inaction, this approximation is exact. Under
quadratic adjustment costs the value function, however, is concave so a log-
linear approach is only approximately correct. With a sufficiently large state
space, however, the probability of being at a point off the edge of the state
space is very low, so any approximation error will have little impact.

STEP 3: The value function iteration process. First, select a starting value
for the value function in the first loop. I used the solution for the value func-
tion without any adjustment costs, which can be easily derived. In the SMM
estimation routine I initially tried using the last solution in the next iteration,
but found this could generate instability in the estimations loop. So instead
I always used the same initial value function. The speed of value function iter-
ation depends on the modulus of contraction, which with a monthly frequency
and a 6.5% annual discount rate is relatively slow. The number of loops was
fixed at 250, which was chosen to ensure convergence in the policy functions.
In practice, value functions typically converge more slowly than the policy func-
tion rules associated with them. Thus, it is generally more efficient to stop the
iterations when the policy functions have converged, even if the value function
has not yet fully converged.

B.2. Simulated Method of Moments Estimation

To generate the simulated data for the SMM estimation (used to create
ΨS(θ) in Equation (5.1)), I simulate an economy with 1000 firms, with 250 units
each. This is run for 30 years, with the first 10 years discarded to eliminate the
effects of any assumptions on initial conditions. Each firm is randomly assigned
an initial drift parameter μL or μH . I run this simulations 25 times to try to av-
erage out over the impact of any individual macro shocks. The same seed is
always used in every simulation iteration. I also assume firms are initially dis-
tributed equally across μL and μH given the symmetry of the transition matrix
for μi�t . To ensure that first-moment draws have a constant aggregate drift rate,
I numerically set∑

i�j

Ai�j�t = exp(μL+μH)/2t
∑
i�j

Ai�j�0�

consistent with (3.6) as N → ∞, which in smaller samples stops extreme draws
for individual units from driving macro averages.

I use a simulated annealing algorithm for minimizing the criterion function
in the estimation step in Equation (5.1). This starts with a predefined first and
second guess. For the third guess onward it takes the best prior guess and ran-
domizes from this to generate a new set of parameter guesses. That is, it takes
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the best-fit parameters and randomly “jumps off” from this point for its next
guess. Over time the algorithm “cools,” so that the variance of the parameter
jumps falls, allowing the estimator to fine tune its parameter estimates around
the global best fit. I restart the program with different initial conditions to en-
sure the estimator converges to the global minimum. The simulated annealing
algorithm is extremely slow, which is an issue since it restricts the size of the
parameter space which can be estimated. Nevertheless, I use this because it
is robust to the presence of local minima and discontinuities in the criterion
function across the parameter space.

To generate the standard errors for the parameter point estimates, I gen-
erate numerical derivatives of the simulation moments with respect to the
parameters and weight them using the optimal weighting matrix. One prac-
tical issue with this is that the value of the numerical derivative, defined as
f ′(x) = f (x+ε)−f (x)

ε
, is sensitive to the exact value of ε chosen. This is a com-

mon problem with calculating numerical derivatives using simulated data with
underlying discontinuities, arising, for example, from grid-point-defined value
functions. To address this, I calculate four values of the numerical derivative
for an ε of +1%, +2.5%, +5%, and −1% of the midpoint of the parameter
space57 and then take the median value of these numerical derivatives. This
helps to ensure that the numerical derivative is robust to outliers arising from
any discontinuities in the criterion function.
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